File size: 8,999 Bytes
8a58cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""Query for GPTKGTableIndex."""
import logging
from collections import defaultdict
from enum import Enum
from typing import Any, Dict, List, Optional

from gpt_index.data_structs.data_structs import KG, Node
from gpt_index.indices.keyword_table.utils import extract_keywords_given_response
from gpt_index.indices.query.base import BaseGPTIndexQuery
from gpt_index.indices.query.embedding_utils import (
    SimilarityTracker,
    get_top_k_embeddings,
)
from gpt_index.indices.query.schema import QueryBundle
from gpt_index.prompts.default_prompts import DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE
from gpt_index.prompts.prompts import QueryKeywordExtractPrompt
from gpt_index.utils import truncate_text

DQKET = DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE


class KGQueryMode(str, Enum):
    """Query mode enum for Knowledge Graphs.

    Can be passed as the enum struct, or as the underlying string.

    Attributes:
        KEYWORD ("keyword"): Default query mode, using keywords to find triplets.
        EMBEDDING ("embedding"): Embedding mode, using embeddings to find
            similar triplets.
        HYBRID ("hybrid"): Hyrbid mode, combining both keywords and embeddings
            to find relevant triplets.
    """

    KEYWORD = "keyword"
    EMBEDDING = "embedding"
    HYBRID = "hybrid"


class GPTKGTableQuery(BaseGPTIndexQuery[KG]):
    """Base GPT KG Table Index Query.

    Arguments are shared among subclasses.

    Args:
        query_keyword_extract_template (Optional[QueryKGExtractPrompt]): A Query
            KG Extraction
            Prompt (see :ref:`Prompt-Templates`).
        refine_template (Optional[RefinePrompt]): A Refinement Prompt
            (see :ref:`Prompt-Templates`).
        text_qa_template (Optional[QuestionAnswerPrompt]): A Question Answering Prompt
            (see :ref:`Prompt-Templates`).
        max_keywords_per_query (int): Maximum number of keywords to extract from query.
        num_chunks_per_query (int): Maximum number of text chunks to query.
        include_text (bool): Use the document text source from each relevent triplet
            during queries.
        embedding_mode (KGQueryMode): Specifies whether to use keyowrds,
            embeddings, or both to find relevent triplets. Should be one of "keyword",
            "embedding", or "hybrid".
        similarity_top_k (int): The number of top embeddings to use
            (if embeddings are used).
    """

    def __init__(
        self,
        index_struct: KG,
        query_keyword_extract_template: Optional[QueryKeywordExtractPrompt] = None,
        max_keywords_per_query: int = 10,
        num_chunks_per_query: int = 10,
        include_text: bool = True,
        embedding_mode: Optional[KGQueryMode] = KGQueryMode.KEYWORD,
        similarity_top_k: int = 2,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        super().__init__(index_struct=index_struct, **kwargs)
        self.max_keywords_per_query = max_keywords_per_query
        self.num_chunks_per_query = num_chunks_per_query
        self.query_keyword_extract_template = query_keyword_extract_template or DQKET
        self.similarity_top_k = similarity_top_k
        self._include_text = include_text
        self._embedding_mode = KGQueryMode(embedding_mode)

    def _get_keywords(self, query_str: str) -> List[str]:
        """Extract keywords."""
        response, _ = self._llm_predictor.predict(
            self.query_keyword_extract_template,
            max_keywords=self.max_keywords_per_query,
            question=query_str,
        )
        keywords = extract_keywords_given_response(
            response, start_token="KEYWORDS:", lowercase=False
        )
        return list(keywords)

    def _extract_rel_text_keywords(self, rel_texts: List[str]) -> List[str]:
        """Find the keywords for given rel text triplets."""
        keywords = []
        for rel_text in rel_texts:
            keyword = rel_text.split(",")[0]
            if keyword:
                keywords.append(keyword.strip("(\"'"))
        return keywords

    def _get_nodes_for_response(
        self,
        query_bundle: QueryBundle,
        similarity_tracker: Optional[SimilarityTracker] = None,
    ) -> List[Node]:
        """Get nodes for response."""
        logging.info(f"> Starting query: {query_bundle.query_str}")
        keywords = self._get_keywords(query_bundle.query_str)
        logging.info(f"> Query keywords: {keywords}")
        rel_texts = []
        cur_rel_map = {}
        chunk_indices_count: Dict[str, int] = defaultdict(int)

        if self._embedding_mode != KGQueryMode.EMBEDDING:
            for keyword in keywords:
                cur_rel_texts = self.index_struct.get_rel_map_texts(keyword)
                rel_texts.extend(cur_rel_texts)
                cur_rel_map[keyword] = self.index_struct.get_rel_map_tuples(keyword)
                if self._include_text:
                    for node_id in self.index_struct.get_node_ids(keyword):
                        chunk_indices_count[node_id] += 1

        if (
            self._embedding_mode != KGQueryMode.KEYWORD
            and len(self.index_struct.embedding_dict) > 0
        ):
            query_embedding = self._embed_model.get_text_embedding(
                query_bundle.query_str
            )
            all_rel_texts = list(self.index_struct.embedding_dict.keys())

            rel_text_embeddings = [
                self.index_struct.embedding_dict[_id] for _id in all_rel_texts
            ]
            similarities, top_rel_texts = get_top_k_embeddings(
                query_embedding,
                rel_text_embeddings,
                similarity_top_k=self.similarity_top_k,
                embedding_ids=all_rel_texts,
                similarity_cutoff=self.similarity_cutoff,
            )
            logging.debug(
                f"Found the following rel_texts+query similarites: {str(similarities)}"
            )
            logging.debug(f"Found the following top_k rel_texts: {str(rel_texts)}")
            rel_texts.extend(top_rel_texts)
            if self._include_text:
                keywords = self._extract_rel_text_keywords(top_rel_texts)
                nested_node_ids = [
                    self.index_struct.get_node_ids(keyword) for keyword in keywords
                ]
                # flatten list
                node_ids = [_id for ids in nested_node_ids for _id in ids]
                for node_id in node_ids:
                    chunk_indices_count[node_id] += 1
        elif len(self.index_struct.embedding_dict) == 0:
            logging.error(
                "Index was not constructed with embeddings, skipping embedding usage..."
            )

        # remove any duplicates from keyword + embedding queries
        if self._embedding_mode == KGQueryMode.HYBRID:
            rel_texts = list(set(rel_texts))

        sorted_chunk_indices = sorted(
            list(chunk_indices_count.keys()),
            key=lambda x: chunk_indices_count[x],
            reverse=True,
        )
        sorted_chunk_indices = sorted_chunk_indices[: self.num_chunks_per_query]
        sorted_nodes = [
            self.index_struct.text_chunks[idx] for idx in sorted_chunk_indices
        ]
        # filter sorted nodes
        sorted_nodes = [node for node in sorted_nodes if self._should_use_node(node)]
        for chunk_idx, node in zip(sorted_chunk_indices, sorted_nodes):
            # nodes are found with keyword mapping, give high conf to avoid cutoff
            if similarity_tracker is not None:
                similarity_tracker.add(node, 1000.0)
            logging.info(
                f"> Querying with idx: {chunk_idx}: "
                f"{truncate_text(node.get_text(), 80)}"
            )

        # add relationships as Node
        # TODO: make initial text customizable
        rel_initial_text = (
            "The following are knowledge triplets "
            "in the form of (subset, predicate, object):"
        )
        rel_info = [rel_initial_text] + rel_texts
        rel_node_info = {
            "kg_rel_texts": rel_texts,
            "kg_rel_map": cur_rel_map,
        }
        rel_text_node = Node(text="\n".join(rel_info), node_info=rel_node_info)
        # this node is constructed from rel_texts, give high confidence to avoid cutoff
        if similarity_tracker is not None:
            similarity_tracker.add(rel_text_node, 1000.0)
        rel_info_text = "\n".join(rel_info)
        logging.info(f"> Extracted relationships: {rel_info_text}")
        sorted_nodes.append(rel_text_node)

        return sorted_nodes

    def _get_extra_info_for_response(
        self, nodes: List[Node]
    ) -> Optional[Dict[str, Any]]:
        """Get extra info for response."""
        for node in nodes:
            if node.node_info is None or "kg_rel_map" not in node.node_info:
                continue
            return node.node_info
        raise ValueError("kg_rel_map must be found in at least one Node.")