Spaces:
Runtime error
Runtime error
AbeerTrial
commited on
Commit
·
0abab6d
1
Parent(s):
59e6084
Upload 13 files
Browse files- app.py +907 -0
- local_db/test01.txt +1 -0
- requirements.txt +13 -0
- sbar_docs/Benjamin Martinez.docx +0 -0
- sbar_docs/David Moore.docx +0 -0
- sbar_docs/Isabella Brown.docx +0 -0
- sbar_docs/Jerry Tylor.docx +0 -0
- sbar_docs/Sophia Johnson.docx +0 -0
- soap_docs/Jackson Lee.docx +0 -0
- soap_docs/Mason Jones.docx +0 -0
- soap_docs/Olivia Thomas.docx +0 -0
- soap_docs/Samual Harris.docx +0 -0
- soap_docs/William Anderson.docx +0 -0
app.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import openai
|
4 |
+
|
5 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
6 |
+
os.environ["OPENAI_API_KEY"]
|
7 |
+
|
8 |
+
def save_file(input_file):
|
9 |
+
import shutil
|
10 |
+
import os
|
11 |
+
|
12 |
+
destination_dir = "/home/user/app/file/"
|
13 |
+
os.makedirs(destination_dir, exist_ok=True)
|
14 |
+
|
15 |
+
output_dir="/home/user/app/file/"
|
16 |
+
|
17 |
+
for file in input_file:
|
18 |
+
shutil.copy(file.name, output_dir)
|
19 |
+
|
20 |
+
return "File(s) saved successfully!"
|
21 |
+
|
22 |
+
def process_file():
|
23 |
+
from langchain.document_loaders import PyPDFLoader
|
24 |
+
from langchain.document_loaders import DirectoryLoader
|
25 |
+
from langchain.document_loaders import TextLoader
|
26 |
+
from langchain.document_loaders import Docx2txtLoader
|
27 |
+
from langchain.vectorstores import FAISS
|
28 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
29 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
30 |
+
import openai
|
31 |
+
|
32 |
+
loader1 = DirectoryLoader('/home/user/app/file/', glob="./*.pdf", loader_cls=PyPDFLoader)
|
33 |
+
document1 = loader1.load()
|
34 |
+
|
35 |
+
loader2 = DirectoryLoader('/home/user/app/file/', glob="./*.txt", loader_cls=TextLoader)
|
36 |
+
document2 = loader2.load()
|
37 |
+
|
38 |
+
loader3 = DirectoryLoader('/home/user/app/file/', glob="./*.docx", loader_cls=Docx2txtLoader)
|
39 |
+
document3 = loader3.load()
|
40 |
+
|
41 |
+
document1.extend(document2)
|
42 |
+
document1.extend(document3)
|
43 |
+
|
44 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
45 |
+
chunk_size=1000,
|
46 |
+
chunk_overlap=200,
|
47 |
+
length_function=len)
|
48 |
+
|
49 |
+
docs = text_splitter.split_documents(document1)
|
50 |
+
embeddings = OpenAIEmbeddings()
|
51 |
+
|
52 |
+
file_db = FAISS.from_documents(docs, embeddings)
|
53 |
+
file_db.save_local("/home/user/app/file_db/")
|
54 |
+
|
55 |
+
return "File(s) processed successfully!"
|
56 |
+
|
57 |
+
def process_local():
|
58 |
+
from langchain.document_loaders import PyPDFLoader
|
59 |
+
from langchain.document_loaders import DirectoryLoader
|
60 |
+
from langchain.document_loaders import TextLoader
|
61 |
+
from langchain.document_loaders import Docx2txtLoader
|
62 |
+
from langchain.vectorstores import FAISS
|
63 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
64 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
65 |
+
import openai
|
66 |
+
import os
|
67 |
+
|
68 |
+
destination_dir = "/home/user/app/local_docs/"
|
69 |
+
os.makedirs(destination_dir, exist_ok=True)
|
70 |
+
|
71 |
+
directory_path = '/home/user/app/local_db1/'
|
72 |
+
if os.path.exists(directory_path):
|
73 |
+
os.rmdir(directory_path)
|
74 |
+
|
75 |
+
loader1 = DirectoryLoader('/home/user/app/local_docs/', glob="./*.pdf", loader_cls=PyPDFLoader)
|
76 |
+
document1 = loader1.load()
|
77 |
+
|
78 |
+
loader2 = DirectoryLoader('/home/user/app/local_docs/', glob="./*.txt", loader_cls=TextLoader)
|
79 |
+
document2 = loader2.load()
|
80 |
+
|
81 |
+
loader3 = DirectoryLoader('/home/user/app/local_docs/', glob="./*.docx", loader_cls=Docx2txtLoader)
|
82 |
+
document3 = loader3.load()
|
83 |
+
|
84 |
+
document1.extend(document2)
|
85 |
+
document1.extend(document3)
|
86 |
+
|
87 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
88 |
+
chunk_size=1000,
|
89 |
+
chunk_overlap=200,
|
90 |
+
length_function=len)
|
91 |
+
|
92 |
+
docs = text_splitter.split_documents(document1)
|
93 |
+
embeddings = OpenAIEmbeddings()
|
94 |
+
|
95 |
+
file_db = FAISS.from_documents(docs, embeddings)
|
96 |
+
file_db.save_local("/home/user/app/local_db1/")
|
97 |
+
|
98 |
+
return "File(s) processed successfully!"
|
99 |
+
|
100 |
+
def formatted_response(docs, response):
|
101 |
+
formatted_output = response + "\n\nSources"
|
102 |
+
|
103 |
+
for i, doc in enumerate(docs):
|
104 |
+
source_info = doc.metadata.get('source', 'Unknown source')
|
105 |
+
page_info = doc.metadata.get('page', None)
|
106 |
+
|
107 |
+
file_name = source_info.split('/')[-1].strip()
|
108 |
+
|
109 |
+
if page_info is not None:
|
110 |
+
formatted_output += f"\n{file_name}\tpage no {page_info}"
|
111 |
+
else:
|
112 |
+
formatted_output += f"\n{file_name}"
|
113 |
+
|
114 |
+
return formatted_output
|
115 |
+
|
116 |
+
def search_file(question):
|
117 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
118 |
+
from langchain.vectorstores import FAISS
|
119 |
+
from langchain.chains.question_answering import load_qa_chain
|
120 |
+
from langchain.callbacks import get_openai_callback
|
121 |
+
from langchain.llms import OpenAI
|
122 |
+
import openai
|
123 |
+
from langchain.chat_models import ChatOpenAI
|
124 |
+
|
125 |
+
embeddings = OpenAIEmbeddings()
|
126 |
+
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
|
127 |
+
docs = file_db.similarity_search(question)
|
128 |
+
|
129 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
130 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
131 |
+
|
132 |
+
with get_openai_callback() as cb:
|
133 |
+
response = chain.run(input_documents=docs, question=question)
|
134 |
+
print(cb)
|
135 |
+
|
136 |
+
return formatted_response(docs, response)
|
137 |
+
|
138 |
+
def local_search(question):
|
139 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
140 |
+
from langchain.vectorstores import FAISS
|
141 |
+
from langchain.chains.question_answering import load_qa_chain
|
142 |
+
from langchain.callbacks import get_openai_callback
|
143 |
+
from langchain.llms import OpenAI
|
144 |
+
import openai
|
145 |
+
from langchain.chat_models import ChatOpenAI
|
146 |
+
|
147 |
+
embeddings = OpenAIEmbeddings()
|
148 |
+
file_db = FAISS.load_local("/home/user/app/local_db1/", embeddings)
|
149 |
+
docs = file_db.similarity_search(question)
|
150 |
+
|
151 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
152 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
153 |
+
|
154 |
+
with get_openai_callback() as cb:
|
155 |
+
response = chain.run(input_documents=docs, question=question)
|
156 |
+
print(cb)
|
157 |
+
|
158 |
+
return formatted_response(docs, response)
|
159 |
+
|
160 |
+
def delete_file():
|
161 |
+
|
162 |
+
import shutil
|
163 |
+
|
164 |
+
path1 = "/home/user/app/file/"
|
165 |
+
path2 = "/home/user/app/file_db/"
|
166 |
+
|
167 |
+
try:
|
168 |
+
shutil.rmtree(path1)
|
169 |
+
shutil.rmtree(path2)
|
170 |
+
return "Deleted Successfully"
|
171 |
+
|
172 |
+
except:
|
173 |
+
return "Already Deleted"
|
174 |
+
|
175 |
+
global soap_file_list
|
176 |
+
global sbar_file_list
|
177 |
+
|
178 |
+
def soap_refresh():
|
179 |
+
import os
|
180 |
+
import gradio as gr
|
181 |
+
global soap_file_list
|
182 |
+
|
183 |
+
destination_folder = "/home/user/app/soap_docs/"
|
184 |
+
if not os.path.exists(destination_folder):
|
185 |
+
os.makedirs(destination_folder)
|
186 |
+
|
187 |
+
directory = '/home/user/app/soap_docs/'
|
188 |
+
soap_file_list = []
|
189 |
+
|
190 |
+
for root, dirs, files in os.walk(directory):
|
191 |
+
for file in files:
|
192 |
+
soap_file_list.append(file)
|
193 |
+
return gr.CheckboxGroup.update(choices=soap_file_list)
|
194 |
+
|
195 |
+
def sbar_refresh():
|
196 |
+
import os
|
197 |
+
import gradio as gr
|
198 |
+
global sbar_file_list
|
199 |
+
|
200 |
+
destination_folder = "/home/user/app/sbar_docs/"
|
201 |
+
if not os.path.exists(destination_folder):
|
202 |
+
os.makedirs(destination_folder)
|
203 |
+
|
204 |
+
directory = '/home/user/app/sbar_docs/'
|
205 |
+
sbar_file_list = []
|
206 |
+
|
207 |
+
for root, dirs, files in os.walk(directory):
|
208 |
+
for file in files:
|
209 |
+
sbar_file_list.append(file)
|
210 |
+
return gr.CheckboxGroup.update(choices=sbar_file_list)
|
211 |
+
|
212 |
+
def ask_soap(doc_names, question):
|
213 |
+
from langchain.llms import OpenAI
|
214 |
+
from langchain import PromptTemplate, LLMChain
|
215 |
+
from langchain.chat_models import ChatOpenAI
|
216 |
+
import openai
|
217 |
+
import docx
|
218 |
+
import os
|
219 |
+
|
220 |
+
destination_folder = "/home/user/app/soap_docs/"
|
221 |
+
if not os.path.exists(destination_folder):
|
222 |
+
os.makedirs(destination_folder)
|
223 |
+
|
224 |
+
extracted_text = "Extracted text:\n\n\n"
|
225 |
+
|
226 |
+
for doc_name in doc_names:
|
227 |
+
docx_path = "/home/user/app/soap_docs/" + doc_name
|
228 |
+
doc = docx.Document(docx_path)
|
229 |
+
|
230 |
+
for paragraph in doc.paragraphs:
|
231 |
+
extracted_text += paragraph.text + "\n"
|
232 |
+
|
233 |
+
extracted_text += "\nExtracted text:\n\n\n"
|
234 |
+
|
235 |
+
question = (
|
236 |
+
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
|
237 |
+
)
|
238 |
+
extracted_text += question
|
239 |
+
|
240 |
+
if extracted_text:
|
241 |
+
print(extracted_text)
|
242 |
+
else:
|
243 |
+
print("failed")
|
244 |
+
|
245 |
+
template = """Question: {question}
|
246 |
+
|
247 |
+
Answer: Let's think step by step."""
|
248 |
+
|
249 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
250 |
+
|
251 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
252 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
253 |
+
response = llm_chain.run(extracted_text)
|
254 |
+
|
255 |
+
return response
|
256 |
+
|
257 |
+
def ask_sbar(doc_names, question):
|
258 |
+
from langchain.llms import OpenAI
|
259 |
+
from langchain import PromptTemplate, LLMChain
|
260 |
+
from langchain.chat_models import ChatOpenAI
|
261 |
+
import openai
|
262 |
+
import docx
|
263 |
+
import os
|
264 |
+
|
265 |
+
destination_folder = "/home/user/app/sbar_docs/"
|
266 |
+
if not os.path.exists(destination_folder):
|
267 |
+
os.makedirs(destination_folder)
|
268 |
+
|
269 |
+
extracted_text = "Extracted text:\n\n\n"
|
270 |
+
|
271 |
+
for doc_name in doc_names:
|
272 |
+
docx_path = "/home/user/app/sbar_docs/" + doc_name
|
273 |
+
doc = docx.Document(docx_path)
|
274 |
+
|
275 |
+
for paragraph in doc.paragraphs:
|
276 |
+
extracted_text += paragraph.text + "\n"
|
277 |
+
|
278 |
+
extracted_text += "\nExtracted text:\n\n\n"
|
279 |
+
|
280 |
+
question = (
|
281 |
+
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
|
282 |
+
)
|
283 |
+
extracted_text += question
|
284 |
+
|
285 |
+
if extracted_text:
|
286 |
+
print(extracted_text)
|
287 |
+
else:
|
288 |
+
print("failed")
|
289 |
+
|
290 |
+
template = """Question: {question}
|
291 |
+
|
292 |
+
Answer: Let's think step by step."""
|
293 |
+
|
294 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
295 |
+
|
296 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
297 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
298 |
+
response = llm_chain.run(extracted_text)
|
299 |
+
|
300 |
+
return response
|
301 |
+
|
302 |
+
soap_refresh()
|
303 |
+
|
304 |
+
def ask_all_soap(question):
|
305 |
+
from langchain.llms import OpenAI
|
306 |
+
from langchain import PromptTemplate, LLMChain
|
307 |
+
from langchain.chat_models import ChatOpenAI
|
308 |
+
import openai
|
309 |
+
import docx
|
310 |
+
import os
|
311 |
+
global soap_file_list
|
312 |
+
soap_file_list = soap_file_list
|
313 |
+
|
314 |
+
destination_folder = "/home/user/app/soap_docs/"
|
315 |
+
if not os.path.exists(destination_folder):
|
316 |
+
os.makedirs(destination_folder)
|
317 |
+
|
318 |
+
extracted_text = "Extracted text:\n\n\n"
|
319 |
+
|
320 |
+
for file in soap_file_list:
|
321 |
+
docx_path = "/home/user/app/soap_docs/" + file
|
322 |
+
doc = docx.Document(docx_path)
|
323 |
+
|
324 |
+
for paragraph in doc.paragraphs:
|
325 |
+
extracted_text += paragraph.text + "\n"
|
326 |
+
|
327 |
+
extracted_text += "\nExtracted text:\n\n\n"
|
328 |
+
|
329 |
+
question = (
|
330 |
+
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
|
331 |
+
)
|
332 |
+
extracted_text += question
|
333 |
+
|
334 |
+
if extracted_text:
|
335 |
+
print(extracted_text)
|
336 |
+
else:
|
337 |
+
print("failed")
|
338 |
+
|
339 |
+
template = """Question: {question}
|
340 |
+
|
341 |
+
Answer: Let's think step by step."""
|
342 |
+
|
343 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
344 |
+
|
345 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
346 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
347 |
+
response = llm_chain.run(extracted_text)
|
348 |
+
|
349 |
+
return response
|
350 |
+
|
351 |
+
sbar_refresh()
|
352 |
+
|
353 |
+
def ask_all_sbar(question):
|
354 |
+
from langchain.llms import OpenAI
|
355 |
+
from langchain import PromptTemplate, LLMChain
|
356 |
+
from langchain.chat_models import ChatOpenAI
|
357 |
+
import openai
|
358 |
+
import docx
|
359 |
+
import os
|
360 |
+
global sbar_file_list
|
361 |
+
sbar_file_list = sbar_file_list
|
362 |
+
|
363 |
+
destination_folder = "/home/user/app/sbar_docs/"
|
364 |
+
if not os.path.exists(destination_folder):
|
365 |
+
os.makedirs(destination_folder)
|
366 |
+
|
367 |
+
extracted_text = "Extracted text:\n\n\n"
|
368 |
+
|
369 |
+
for file in sbar_file_list:
|
370 |
+
docx_path = "/home/user/app/sbar_docs/" + file
|
371 |
+
doc = docx.Document(docx_path)
|
372 |
+
|
373 |
+
for paragraph in doc.paragraphs:
|
374 |
+
extracted_text += paragraph.text + "\n"
|
375 |
+
|
376 |
+
extracted_text += "\nExtracted text:\n\n\n"
|
377 |
+
|
378 |
+
question = (
|
379 |
+
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
|
380 |
+
)
|
381 |
+
extracted_text += question
|
382 |
+
|
383 |
+
if extracted_text:
|
384 |
+
print(extracted_text)
|
385 |
+
else:
|
386 |
+
print("failed")
|
387 |
+
|
388 |
+
template = """Question: {question}
|
389 |
+
|
390 |
+
Answer: Let's think step by step."""
|
391 |
+
|
392 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
393 |
+
|
394 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
395 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
396 |
+
response = llm_chain.run(extracted_text)
|
397 |
+
|
398 |
+
return response
|
399 |
+
|
400 |
+
def search_gpt(question):
|
401 |
+
from langchain.llms import OpenAI
|
402 |
+
from langchain import PromptTemplate, LLMChain
|
403 |
+
from langchain.chat_models import ChatOpenAI
|
404 |
+
|
405 |
+
template = """Question: {question}
|
406 |
+
|
407 |
+
Answer: Let's think step by step."""
|
408 |
+
|
409 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
410 |
+
|
411 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
412 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
413 |
+
response = llm_chain.run(question)
|
414 |
+
|
415 |
+
return response
|
416 |
+
|
417 |
+
def local_gpt(question):
|
418 |
+
from langchain.llms import OpenAI
|
419 |
+
from langchain import PromptTemplate, LLMChain
|
420 |
+
from langchain.chat_models import ChatOpenAI
|
421 |
+
|
422 |
+
template = """Question: {question}
|
423 |
+
|
424 |
+
Answer: Let's think step by step."""
|
425 |
+
|
426 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
427 |
+
|
428 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
429 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
430 |
+
response = llm_chain.run(question)
|
431 |
+
|
432 |
+
return response
|
433 |
+
|
434 |
+
global output
|
435 |
+
|
436 |
+
def audio_text(filepath):
|
437 |
+
import openai
|
438 |
+
global output
|
439 |
+
|
440 |
+
audio = open(filepath, "rb")
|
441 |
+
transcript = openai.Audio.transcribe("whisper-1", audio)
|
442 |
+
output = transcript["text"]
|
443 |
+
|
444 |
+
return output
|
445 |
+
|
446 |
+
global soap_response
|
447 |
+
global sbar_response
|
448 |
+
|
449 |
+
def transcript_soap(text):
|
450 |
+
from langchain.llms import OpenAI
|
451 |
+
from langchain import PromptTemplate, LLMChain
|
452 |
+
from langchain.chat_models import ChatOpenAI
|
453 |
+
|
454 |
+
global soap_response
|
455 |
+
|
456 |
+
question = (
|
457 |
+
"Use the following context given below to generate a detailed SOAP Report:\n\n"
|
458 |
+
)
|
459 |
+
question += text
|
460 |
+
print(question)
|
461 |
+
|
462 |
+
template = """Question: {question}
|
463 |
+
|
464 |
+
Answer: Let's think step by step."""
|
465 |
+
|
466 |
+
word_count = len(text.split())
|
467 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
468 |
+
|
469 |
+
if word_count < 2000:
|
470 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
471 |
+
elif word_count < 5000:
|
472 |
+
llm = ChatOpenAI(model="gpt-4")
|
473 |
+
else:
|
474 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
475 |
+
|
476 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
477 |
+
soap_response = llm_chain.run(question)
|
478 |
+
|
479 |
+
return soap_response
|
480 |
+
|
481 |
+
def transcript_sbar(text):
|
482 |
+
from langchain.llms import OpenAI
|
483 |
+
from langchain import PromptTemplate, LLMChain
|
484 |
+
from langchain.chat_models import ChatOpenAI
|
485 |
+
|
486 |
+
global sbar_response
|
487 |
+
|
488 |
+
question = (
|
489 |
+
"Use the following context given below to generate a detailed SBAR Report:\n\n"
|
490 |
+
)
|
491 |
+
question += text
|
492 |
+
print(question)
|
493 |
+
|
494 |
+
template = """Question: {question}
|
495 |
+
|
496 |
+
Answer: Let's think step by step."""
|
497 |
+
|
498 |
+
word_count = len(text.split())
|
499 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
500 |
+
|
501 |
+
if word_count < 2000:
|
502 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
503 |
+
elif word_count < 5000:
|
504 |
+
llm = ChatOpenAI(model="gpt-4")
|
505 |
+
else:
|
506 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
507 |
+
|
508 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
509 |
+
sbar_response = llm_chain.run(question)
|
510 |
+
|
511 |
+
return sbar_response
|
512 |
+
|
513 |
+
def text_soap():
|
514 |
+
from langchain.llms import OpenAI
|
515 |
+
from langchain import PromptTemplate, LLMChain
|
516 |
+
from langchain.chat_models import ChatOpenAI
|
517 |
+
|
518 |
+
global output
|
519 |
+
global soap_response
|
520 |
+
output = output
|
521 |
+
|
522 |
+
question = (
|
523 |
+
"Use the following context given below to generate a detailed SOAP Report:\n\n"
|
524 |
+
)
|
525 |
+
question += output
|
526 |
+
print(question)
|
527 |
+
|
528 |
+
template = """Question: {question}
|
529 |
+
|
530 |
+
Answer: Let's think step by step."""
|
531 |
+
|
532 |
+
word_count = len(output.split())
|
533 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
534 |
+
|
535 |
+
if word_count < 2000:
|
536 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
537 |
+
elif word_count < 5000:
|
538 |
+
llm = ChatOpenAI(model="gpt-4")
|
539 |
+
else:
|
540 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
541 |
+
|
542 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
543 |
+
soap_response = llm_chain.run(question)
|
544 |
+
|
545 |
+
return soap_response
|
546 |
+
|
547 |
+
def text_sbar():
|
548 |
+
from langchain.llms import OpenAI
|
549 |
+
from langchain import PromptTemplate, LLMChain
|
550 |
+
from langchain.chat_models import ChatOpenAI
|
551 |
+
|
552 |
+
global output
|
553 |
+
global sbar_response
|
554 |
+
output = output
|
555 |
+
|
556 |
+
question = (
|
557 |
+
"Use the following context given below to generate a detailed SBAR Report:\n\n"
|
558 |
+
)
|
559 |
+
question += output
|
560 |
+
print(question)
|
561 |
+
|
562 |
+
template = """Question: {question}
|
563 |
+
|
564 |
+
Answer: Let's think step by step."""
|
565 |
+
|
566 |
+
word_count = len(output.split())
|
567 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
568 |
+
|
569 |
+
if word_count < 2000:
|
570 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
571 |
+
elif word_count < 5000:
|
572 |
+
llm = ChatOpenAI(model="gpt-4")
|
573 |
+
else:
|
574 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
575 |
+
|
576 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
577 |
+
sbar_response = llm_chain.run(question)
|
578 |
+
|
579 |
+
return sbar_response
|
580 |
+
|
581 |
+
global soap_path
|
582 |
+
global sbar_path
|
583 |
+
|
584 |
+
def soap_docx(name):
|
585 |
+
global soap_response
|
586 |
+
soap_response = soap_response
|
587 |
+
import docx
|
588 |
+
import os
|
589 |
+
global soap_path
|
590 |
+
|
591 |
+
destination_folder = "/home/user/app/soap_docs/"
|
592 |
+
if not os.path.exists(destination_folder):
|
593 |
+
os.makedirs(destination_folder)
|
594 |
+
|
595 |
+
soap_path = f"/home/user/app/soap_docs/SOAP_{name}.docx"
|
596 |
+
|
597 |
+
doc = docx.Document()
|
598 |
+
doc.add_paragraph(soap_response)
|
599 |
+
doc.save(soap_path)
|
600 |
+
|
601 |
+
return "Successfully saved SOAP .docx File"
|
602 |
+
|
603 |
+
def sbar_docx(name):
|
604 |
+
global sbar_response
|
605 |
+
sbar_response = sbar_response
|
606 |
+
import docx
|
607 |
+
import os
|
608 |
+
global sbar_path
|
609 |
+
|
610 |
+
destination_folder = "/home/user/app/sbar_docs/"
|
611 |
+
if not os.path.exists(destination_folder):
|
612 |
+
os.makedirs(destination_folder)
|
613 |
+
|
614 |
+
sbar_path = f"/home/user/app/sbar_docs/SBAR_{name}.docx"
|
615 |
+
|
616 |
+
doc = docx.Document()
|
617 |
+
doc.add_paragraph(sbar_response)
|
618 |
+
doc.save(sbar_path)
|
619 |
+
|
620 |
+
return "Successfully saved SBAR .docx File"
|
621 |
+
|
622 |
+
def download_soap():
|
623 |
+
global soap_path
|
624 |
+
soap_path = soap_path
|
625 |
+
|
626 |
+
return soap_path
|
627 |
+
|
628 |
+
def download_sbar():
|
629 |
+
global sbar_path
|
630 |
+
sbar_path = sbar_path
|
631 |
+
|
632 |
+
return sbar_path
|
633 |
+
|
634 |
+
import gradio as gr
|
635 |
+
|
636 |
+
css = """
|
637 |
+
.col{
|
638 |
+
max-width: 50%;
|
639 |
+
margin: 0 auto;
|
640 |
+
display: flex;
|
641 |
+
flex-direction: column;
|
642 |
+
justify-content: center;
|
643 |
+
align-items: center;
|
644 |
+
}
|
645 |
+
"""
|
646 |
+
|
647 |
+
theme = gr.Theme.from_hub("shivi/calm_seafoam")
|
648 |
+
|
649 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
650 |
+
gr.Markdown("## <center>Medical App</center>")
|
651 |
+
|
652 |
+
with gr.Tab("Create SOAP and SBAR Reports"):
|
653 |
+
with gr.Column(elem_classes="col"):
|
654 |
+
|
655 |
+
with gr.Tab("From Recorded Audio"):
|
656 |
+
with gr.Column():
|
657 |
+
|
658 |
+
mic_audio_input = gr.Audio(source="microphone", type="filepath", label="Speak to the Microphone")
|
659 |
+
mic_audio_button = gr.Button("Generate Transcript")
|
660 |
+
mic_audio_output = gr.Textbox(label="Transcription")
|
661 |
+
|
662 |
+
gr.ClearButton([mic_audio_input, mic_audio_output])
|
663 |
+
|
664 |
+
with gr.Tab("SOAP Report"):
|
665 |
+
with gr.Column():
|
666 |
+
|
667 |
+
mic_text_soap_button = gr.Button("Generate SOAP Report")
|
668 |
+
mic_text_soap_output = gr.Textbox(label="SOAP Report")
|
669 |
+
|
670 |
+
mic_soap_docx_input = gr.Textbox(label="Enter the name of SOAP .docx File")
|
671 |
+
mic_soap_docx_button = gr.Button("Save SOAP Document")
|
672 |
+
mic_soap_docx_output = gr.Textbox(label="File save status")
|
673 |
+
|
674 |
+
mic_soap_download_button = gr.Button("Download SOAP .docx File")
|
675 |
+
mic_soap_download_output = gr.Files(label="Download Link")
|
676 |
+
|
677 |
+
gr.ClearButton([mic_text_soap_output, mic_soap_docx_input, mic_soap_docx_output, mic_soap_download_output])
|
678 |
+
|
679 |
+
with gr.Tab("SBAR Report"):
|
680 |
+
with gr.Column():
|
681 |
+
|
682 |
+
mic_text_sbar_button = gr.Button("Generate SBAR Report")
|
683 |
+
mic_text_sbar_output = gr.Textbox(label="SBAR Report")
|
684 |
+
|
685 |
+
mic_sbar_docx_input = gr.Textbox(label="Enter the name of SBAR .docx File")
|
686 |
+
mic_sbar_docx_button = gr.Button("Save SBAR Document")
|
687 |
+
mic_sbar_docx_output = gr.Textbox(label="File save status")
|
688 |
+
|
689 |
+
mic_sbar_download_button = gr.Button("Download SBAR .docx File")
|
690 |
+
mic_sbar_download_output = gr.Files(label="Download Link")
|
691 |
+
|
692 |
+
gr.ClearButton([mic_text_sbar_output, mic_sbar_docx_input, mic_sbar_docx_output, mic_sbar_download_output])
|
693 |
+
|
694 |
+
with gr.Tab("From Uploaded Audio"):
|
695 |
+
with gr.Column():
|
696 |
+
|
697 |
+
upload_audio_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File here")
|
698 |
+
upload_audio_button = gr.Button("Generate Transcript")
|
699 |
+
upload_audio_output = gr.Textbox(label="Output")
|
700 |
+
|
701 |
+
gr.ClearButton([upload_audio_input, upload_audio_output])
|
702 |
+
|
703 |
+
with gr.Tab("SOAP Report"):
|
704 |
+
with gr.Column():
|
705 |
+
|
706 |
+
upload_text_soap_button = gr.Button("Generate SOAP Report")
|
707 |
+
upload_text_soap_output = gr.Textbox(label="SOAP Report")
|
708 |
+
|
709 |
+
upload_soap_docx_input = gr.Textbox(label="Enter the name of SOAP .docx File")
|
710 |
+
upload_soap_docx_button = gr.Button("Save SOAP Document")
|
711 |
+
upload_soap_docx_output = gr.Textbox(label="File save status")
|
712 |
+
|
713 |
+
upload_soap_download_button = gr.Button("Download SOAP .docx File")
|
714 |
+
upload_soap_download_output = gr.Files(label="Download Link")
|
715 |
+
|
716 |
+
gr.ClearButton([upload_text_soap_output, upload_soap_docx_input, upload_soap_docx_output, upload_soap_download_output])
|
717 |
+
|
718 |
+
with gr.Tab("SBAR Report"):
|
719 |
+
with gr.Column():
|
720 |
+
|
721 |
+
upload_text_sbar_button = gr.Button("Generate SBAR Report")
|
722 |
+
upload_text_sbar_output = gr.Textbox(label="SBAR Report")
|
723 |
+
|
724 |
+
upload_sbar_docx_input = gr.Textbox(label="Enter the name of SBAR .docx File")
|
725 |
+
upload_sbar_docx_button = gr.Button("Save SBAR Document")
|
726 |
+
upload_sbar_docx_output = gr.Textbox(label="File save status")
|
727 |
+
|
728 |
+
upload_sbar_download_button = gr.Button("Download SBAR .docx File")
|
729 |
+
upload_sbar_download_output = gr.Files(label="Download Link")
|
730 |
+
|
731 |
+
gr.ClearButton([upload_text_sbar_output, upload_sbar_docx_input, upload_sbar_docx_output, upload_sbar_download_output])
|
732 |
+
|
733 |
+
with gr.Tab("From Text Transcript"):
|
734 |
+
with gr.Column():
|
735 |
+
|
736 |
+
text_transcript_input = gr.Textbox(label="Enter your Transcript here")
|
737 |
+
|
738 |
+
gr.ClearButton([text_transcript_input])
|
739 |
+
|
740 |
+
with gr.Tab("SOAP Report"):
|
741 |
+
with gr.Column():
|
742 |
+
|
743 |
+
text_text_soap_button = gr.Button("Generate SOAP Report")
|
744 |
+
text_text_soap_output = gr.Textbox(label="SOAP Report")
|
745 |
+
|
746 |
+
text_soap_docx_input = gr.Textbox(label="Enter the name of SOAP .docx File")
|
747 |
+
text_soap_docx_button = gr.Button("Save SOAP Document")
|
748 |
+
text_soap_docx_output = gr.Textbox(label="File save status")
|
749 |
+
|
750 |
+
text_soap_download_button = gr.Button("Download SOAP .docx File")
|
751 |
+
text_soap_download_output = gr.Files(label="Download Link")
|
752 |
+
|
753 |
+
gr.ClearButton([text_text_soap_output, text_soap_docx_input, text_soap_docx_output, text_soap_download_output])
|
754 |
+
|
755 |
+
with gr.Tab("SBAR Report"):
|
756 |
+
with gr.Column():
|
757 |
+
|
758 |
+
text_text_sbar_button = gr.Button("Generate SBAR Report")
|
759 |
+
text_text_sbar_output = gr.Textbox(label="SBAR Report")
|
760 |
+
|
761 |
+
text_sbar_docx_input = gr.Textbox(label="Enter the name of SBAR .docx File")
|
762 |
+
text_sbar_docx_button = gr.Button("Save SBAR Document")
|
763 |
+
text_sbar_docx_output = gr.Textbox(label="File save status")
|
764 |
+
|
765 |
+
text_sbar_download_button = gr.Button("Download SBAR .docx File")
|
766 |
+
text_sbar_download_output = gr.Files(label="Download Link")
|
767 |
+
|
768 |
+
gr.ClearButton([text_text_sbar_output, text_sbar_docx_input, text_sbar_docx_output, text_sbar_download_output])
|
769 |
+
|
770 |
+
with gr.Tab("Query SOAP and SBAR Reports"):
|
771 |
+
with gr.Column(elem_classes="col"):
|
772 |
+
|
773 |
+
with gr.Tab("Query SOAP Reports"):
|
774 |
+
with gr.Column():
|
775 |
+
|
776 |
+
soap_refresh_button = gr.Button("Refresh")
|
777 |
+
ask_soap_input = gr.CheckboxGroup(label="Choose File(s)")
|
778 |
+
|
779 |
+
ask_soap_question = gr.Textbox(label="Enter Question here")
|
780 |
+
ask_soap_button = gr.Button("Submit")
|
781 |
+
ask_soap_output = gr.Textbox(label="Output")
|
782 |
+
|
783 |
+
ask_all_soap_button = gr.Button("Ask all SOAP Reports")
|
784 |
+
ask_all_soap_output = gr.Textbox(label="Output")
|
785 |
+
|
786 |
+
gr.ClearButton([ask_soap_input, ask_soap_question, ask_soap_output, ask_all_soap_output])
|
787 |
+
|
788 |
+
with gr.Tab("Query SBAR Reports"):
|
789 |
+
with gr.Column():
|
790 |
+
|
791 |
+
sbar_refresh_button = gr.Button("Refresh")
|
792 |
+
ask_sbar_input = gr.CheckboxGroup(label="Choose File(s)")
|
793 |
+
|
794 |
+
ask_sbar_question = gr.Textbox(label="Enter Question here")
|
795 |
+
ask_sbar_button = gr.Button("Submit")
|
796 |
+
ask_sbar_output = gr.Textbox(label="Output")
|
797 |
+
|
798 |
+
ask_all_sbar_button = gr.Button("Ask all SBAR Reports")
|
799 |
+
ask_all_sbar_output = gr.Textbox(label="Output")
|
800 |
+
|
801 |
+
gr.ClearButton([ask_sbar_input, ask_sbar_question, ask_sbar_output, ask_all_sbar_output])
|
802 |
+
|
803 |
+
with gr.Tab("Query your Documents"):
|
804 |
+
with gr.Column(elem_classes="col"):
|
805 |
+
|
806 |
+
with gr.Tab("Upload and Process Documents"):
|
807 |
+
with gr.Column():
|
808 |
+
|
809 |
+
file_upload_input = gr.Files(label="Upload File(s) here")
|
810 |
+
file_upload_button = gr.Button("Upload")
|
811 |
+
file_upload_output = gr.Textbox(label="Output")
|
812 |
+
|
813 |
+
file_process_button = gr.Button("Process")
|
814 |
+
file_process_output = gr.Textbox(label="Output")
|
815 |
+
|
816 |
+
gr.ClearButton([file_upload_input, file_upload_output, file_process_output])
|
817 |
+
|
818 |
+
with gr.Tab("Query Documents"):
|
819 |
+
with gr.Column():
|
820 |
+
|
821 |
+
file_search_input = gr.Textbox(label="Enter Question here")
|
822 |
+
file_search_button = gr.Button("Search")
|
823 |
+
file_search_output = gr.Textbox(label="Output")
|
824 |
+
|
825 |
+
search_gpt_button = gr.Button("Ask ChatGPT")
|
826 |
+
search_gpt_output = gr.Textbox(label="Output")
|
827 |
+
|
828 |
+
file_delete_button = gr.Button("Delete")
|
829 |
+
file_delete_output = gr.Textbox(label="Output")
|
830 |
+
|
831 |
+
gr.ClearButton([file_search_input, file_search_output, search_gpt_output, file_delete_output])
|
832 |
+
|
833 |
+
with gr.Tab("Query all Local Documents"):
|
834 |
+
with gr.Column(elem_classes="col"):
|
835 |
+
|
836 |
+
local_process_button = gr.Button("Process")
|
837 |
+
local_process_output = gr.Textbox(label="Output")
|
838 |
+
|
839 |
+
local_search_input = gr.Textbox(label="Enter Question here")
|
840 |
+
local_search_button = gr.Button("Search")
|
841 |
+
local_search_output = gr.Textbox(label="Output")
|
842 |
+
|
843 |
+
local_gpt_button = gr.Button("Ask ChatGPT")
|
844 |
+
local_gpt_output = gr.Textbox(label="Output")
|
845 |
+
|
846 |
+
gr.ClearButton([local_process_output, local_search_input, local_search_output, local_gpt_output])
|
847 |
+
|
848 |
+
#########################################################################################################
|
849 |
+
file_upload_button.click(save_file, inputs=file_upload_input, outputs=file_upload_output)
|
850 |
+
file_process_button.click(process_file, inputs=None, outputs=file_process_output)
|
851 |
+
|
852 |
+
file_search_button.click(search_file, inputs=file_search_input, outputs=file_search_output)
|
853 |
+
search_gpt_button.click(search_gpt, inputs=file_search_input, outputs=search_gpt_output)
|
854 |
+
|
855 |
+
file_delete_button.click(delete_file, inputs=None, outputs=file_delete_output)
|
856 |
+
|
857 |
+
#########################################################################################################
|
858 |
+
local_process_button.click(process_local, inputs=None, outputs=local_process_output)
|
859 |
+
local_search_button.click(local_search, inputs=local_search_input, outputs=local_search_output)
|
860 |
+
local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)
|
861 |
+
|
862 |
+
########################################################################################################
|
863 |
+
soap_refresh_button.click(soap_refresh, inputs=None, outputs=ask_soap_input)
|
864 |
+
ask_soap_button.click(ask_soap, inputs=[ask_soap_input, ask_soap_question], outputs=ask_soap_output)
|
865 |
+
|
866 |
+
sbar_refresh_button.click(sbar_refresh, inputs=None, outputs=ask_sbar_input)
|
867 |
+
ask_sbar_button.click(ask_sbar, inputs=[ask_sbar_input, ask_sbar_question], outputs=ask_sbar_output)
|
868 |
+
|
869 |
+
ask_all_soap_button.click(ask_all_soap, inputs=ask_soap_question, outputs=ask_all_soap_output)
|
870 |
+
ask_all_sbar_button.click(ask_all_sbar, inputs=ask_sbar_question, outputs=ask_all_sbar_output)
|
871 |
+
|
872 |
+
########################################################################################################
|
873 |
+
mic_audio_button.click(audio_text, inputs=mic_audio_input, outputs=mic_audio_output)
|
874 |
+
|
875 |
+
mic_text_soap_button.click(text_soap, inputs=None, outputs=mic_text_soap_output)
|
876 |
+
mic_text_sbar_button.click(text_sbar, inputs=None, outputs=mic_text_sbar_output)
|
877 |
+
|
878 |
+
mic_soap_docx_button.click(soap_docx, inputs=mic_soap_docx_input, outputs=mic_soap_docx_output)
|
879 |
+
mic_sbar_docx_button.click(sbar_docx, inputs=mic_sbar_docx_input, outputs=mic_sbar_docx_output)
|
880 |
+
|
881 |
+
mic_soap_download_button.click(download_soap, inputs=None, outputs=mic_soap_download_output)
|
882 |
+
mic_sbar_download_button.click(download_sbar, inputs=None, outputs=mic_sbar_download_output)
|
883 |
+
##########################################################################################################
|
884 |
+
upload_audio_button.click(audio_text, inputs=upload_audio_input, outputs=upload_audio_output)
|
885 |
+
|
886 |
+
upload_text_soap_button.click(text_soap, inputs=None, outputs=upload_text_soap_output)
|
887 |
+
upload_text_sbar_button.click(text_sbar, inputs=None, outputs=upload_text_sbar_output)
|
888 |
+
|
889 |
+
upload_soap_docx_button.click(soap_docx, inputs=upload_soap_docx_input, outputs=upload_soap_docx_output)
|
890 |
+
upload_sbar_docx_button.click(sbar_docx, inputs=upload_sbar_docx_input, outputs=upload_sbar_docx_output)
|
891 |
+
|
892 |
+
upload_soap_download_button.click(download_soap, inputs=None, outputs=upload_soap_download_output)
|
893 |
+
upload_sbar_download_button.click(download_sbar, inputs=None, outputs=upload_sbar_download_output)
|
894 |
+
############################################################################################################
|
895 |
+
text_text_soap_button.click(transcript_soap, inputs=text_transcript_input, outputs=text_text_soap_output)
|
896 |
+
text_text_sbar_button.click(transcript_sbar, inputs=text_transcript_input, outputs=text_text_sbar_output)
|
897 |
+
|
898 |
+
text_soap_docx_button.click(soap_docx, inputs=text_soap_docx_input, outputs=text_soap_docx_output)
|
899 |
+
text_sbar_docx_button.click(sbar_docx, inputs=text_sbar_docx_input, outputs=text_sbar_docx_output)
|
900 |
+
|
901 |
+
text_soap_download_button.click(download_soap, inputs=None, outputs=text_soap_download_output)
|
902 |
+
text_sbar_download_button.click(download_sbar, inputs=None, outputs=text_sbar_download_output)
|
903 |
+
#############################################################################################################
|
904 |
+
|
905 |
+
|
906 |
+
demo.queue()
|
907 |
+
demo.launch()
|
local_db/test01.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
test file
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.22.0
|
2 |
+
langchain
|
3 |
+
pypdf
|
4 |
+
PyPDF2
|
5 |
+
streamlit
|
6 |
+
docx2txt
|
7 |
+
gradio
|
8 |
+
faiss-gpu
|
9 |
+
openai
|
10 |
+
tiktoken
|
11 |
+
python-docx
|
12 |
+
git+https://github.com/openai/whisper.git
|
13 |
+
sounddevice
|
sbar_docs/Benjamin Martinez.docx
ADDED
Binary file (27.5 kB). View file
|
|
sbar_docs/David Moore.docx
ADDED
Binary file (27.9 kB). View file
|
|
sbar_docs/Isabella Brown.docx
ADDED
Binary file (28.3 kB). View file
|
|
sbar_docs/Jerry Tylor.docx
ADDED
Binary file (27.8 kB). View file
|
|
sbar_docs/Sophia Johnson.docx
ADDED
Binary file (27.9 kB). View file
|
|
soap_docs/Jackson Lee.docx
ADDED
Binary file (27.1 kB). View file
|
|
soap_docs/Mason Jones.docx
ADDED
Binary file (28 kB). View file
|
|
soap_docs/Olivia Thomas.docx
ADDED
Binary file (27 kB). View file
|
|
soap_docs/Samual Harris.docx
ADDED
Binary file (27.5 kB). View file
|
|
soap_docs/William Anderson.docx
ADDED
Binary file (27.6 kB). View file
|
|