AIERScribePlus / app.py
AbeerTrial's picture
Update app.py
a751762 verified
import os
import openai
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"]
def save_file(input_file):
import shutil
import os
destination_dir = "/home/user/app/file/"
os.makedirs(destination_dir, exist_ok=True)
output_dir="/home/user/app/file/"
for file in input_file:
shutil.copy(file.name, output_dir)
return "File(s) saved successfully!"
def process_file():
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
import openai
loader1 = DirectoryLoader('/home/user/app/file/', glob="./*.pdf", loader_cls=PyPDFLoader)
document1 = loader1.load()
loader2 = DirectoryLoader('/home/user/app/file/', glob="./*.txt", loader_cls=TextLoader)
document2 = loader2.load()
loader3 = DirectoryLoader('/home/user/app/file/', glob="./*.docx", loader_cls=Docx2txtLoader)
document3 = loader3.load()
document1.extend(document2)
document1.extend(document3)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len)
docs = text_splitter.split_documents(document1)
embeddings = OpenAIEmbeddings()
file_db = FAISS.from_documents(docs, embeddings)
file_db.save_local("/home/user/app/file_db/")
return "File(s) processed successfully!"
def process_local():
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
import openai
import os
destination_dir = "/home/user/app/local_docs/"
os.makedirs(destination_dir, exist_ok=True)
directory_path = '/home/user/app/local_db1/'
if os.path.exists(directory_path):
os.rmdir(directory_path)
loader1 = DirectoryLoader('/home/user/app/local_docs/', glob="./*.pdf", loader_cls=PyPDFLoader)
document1 = loader1.load()
loader2 = DirectoryLoader('/home/user/app/local_docs/', glob="./*.txt", loader_cls=TextLoader)
document2 = loader2.load()
loader3 = DirectoryLoader('/home/user/app/local_docs/', glob="./*.docx", loader_cls=Docx2txtLoader)
document3 = loader3.load()
document1.extend(document2)
document1.extend(document3)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len)
docs = text_splitter.split_documents(document1)
embeddings = OpenAIEmbeddings()
file_db = FAISS.from_documents(docs, embeddings)
file_db.save_local("/home/user/app/local_db1/")
return "File(s) processed successfully!"
def formatted_response(docs, response):
formatted_output = response + "\n\nSources"
for i, doc in enumerate(docs):
source_info = doc.metadata.get('source', 'Unknown source')
page_info = doc.metadata.get('page', None)
file_name = source_info.split('/')[-1].strip()
if page_info is not None:
formatted_output += f"\n{file_name}\tpage no {page_info}"
else:
formatted_output += f"\n{file_name}"
return formatted_output
def search_file(question):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import openai
from langchain.chat_models import ChatOpenAI
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
docs = file_db.similarity_search(question)
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response(docs, response)
def local_search(question):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import openai
from langchain.chat_models import ChatOpenAI
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local("/home/user/app/local_db1/", embeddings)
docs = file_db.similarity_search(question)
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response(docs, response)
def delete_file():
import shutil
path1 = "/home/user/app/file/"
path2 = "/home/user/app/file_db/"
try:
shutil.rmtree(path1)
shutil.rmtree(path2)
return "Deleted Successfully"
except:
return "Already Deleted"
global soap_file_list
global sbar_file_list
def soap_refresh():
import os
import gradio as gr
global soap_file_list
destination_folder = "/home/user/app/soap_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
directory = '/home/user/app/soap_docs/'
soap_file_list = []
for root, dirs, files in os.walk(directory):
for file in files:
soap_file_list.append(file)
return gr.CheckboxGroup.update(choices=soap_file_list)
def sbar_refresh():
import os
import gradio as gr
global sbar_file_list
destination_folder = "/home/user/app/sbar_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
directory = '/home/user/app/sbar_docs/'
sbar_file_list = []
for root, dirs, files in os.walk(directory):
for file in files:
sbar_file_list.append(file)
return gr.CheckboxGroup.update(choices=sbar_file_list)
def ask_soap(doc_names, question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
import openai
import docx
import os
destination_folder = "/home/user/app/soap_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
extracted_text = "Extracted text:\n\n\n"
for doc_name in doc_names:
docx_path = "/home/user/app/soap_docs/" + doc_name
doc = docx.Document(docx_path)
for paragraph in doc.paragraphs:
extracted_text += paragraph.text + "\n"
extracted_text += "\nExtracted text:\n\n\n"
question = (
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
)
extracted_text += question
if extracted_text:
print(extracted_text)
else:
print("failed")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(extracted_text)
return response
def ask_sbar(doc_names, question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
import openai
import docx
import os
destination_folder = "/home/user/app/sbar_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
extracted_text = "Extracted text:\n\n\n"
for doc_name in doc_names:
docx_path = "/home/user/app/sbar_docs/" + doc_name
doc = docx.Document(docx_path)
for paragraph in doc.paragraphs:
extracted_text += paragraph.text + "\n"
extracted_text += "\nExtracted text:\n\n\n"
question = (
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
)
extracted_text += question
if extracted_text:
print(extracted_text)
else:
print("failed")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(extracted_text)
return response
soap_refresh()
def ask_all_soap(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
import openai
import docx
import os
global soap_file_list
soap_file_list = soap_file_list
destination_folder = "/home/user/app/soap_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
extracted_text = "Extracted text:\n\n\n"
for file in soap_file_list:
docx_path = "/home/user/app/soap_docs/" + file
doc = docx.Document(docx_path)
for paragraph in doc.paragraphs:
extracted_text += paragraph.text + "\n"
extracted_text += "\nExtracted text:\n\n\n"
question = (
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
)
extracted_text += question
if extracted_text:
print(extracted_text)
else:
print("failed")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(extracted_text)
return response
sbar_refresh()
def ask_all_sbar(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
import openai
import docx
import os
global sbar_file_list
sbar_file_list = sbar_file_list
destination_folder = "/home/user/app/sbar_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
extracted_text = "Extracted text:\n\n\n"
for file in sbar_file_list:
docx_path = "/home/user/app/sbar_docs/" + file
doc = docx.Document(docx_path)
for paragraph in doc.paragraphs:
extracted_text += paragraph.text + "\n"
extracted_text += "\nExtracted text:\n\n\n"
question = (
"\n\nUse the suitable 'Extracted text' to answer the following question:\n" + question
)
extracted_text += question
if extracted_text:
print(extracted_text)
else:
print("failed")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(extracted_text)
return response
def search_gpt(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
def local_gpt(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
global output
def audio_text(filepath):
import openai
global output
audio = open(filepath, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio)
output = transcript["text"]
return output
global soap_response
global sbar_response
def transcript_soap(text):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
global soap_response
question = (
"Use the following context given below to generate a detailed SOAP Report:\n\n"
)
question += text
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
word_count = len(text.split())
prompt = PromptTemplate(template=template, input_variables=["question"])
if word_count < 2000:
llm = ChatOpenAI(model="gpt-3.5-turbo")
elif word_count < 5000:
llm = ChatOpenAI(model="gpt-4")
else:
llm = ChatOpenAI(model="gpt-4-32k")
llm_chain = LLMChain(prompt=prompt, llm=llm)
soap_response = llm_chain.run(question)
return soap_response
def transcript_sbar(text):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
global sbar_response
question = (
"Use the following context given below to generate a detailed SBAR Report:\n\n"
)
question += text
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
word_count = len(text.split())
prompt = PromptTemplate(template=template, input_variables=["question"])
if word_count < 2000:
llm = ChatOpenAI(model="gpt-3.5-turbo")
elif word_count < 5000:
llm = ChatOpenAI(model="gpt-4")
else:
llm = ChatOpenAI(model="gpt-4-32k")
llm_chain = LLMChain(prompt=prompt, llm=llm)
sbar_response = llm_chain.run(question)
return sbar_response
def text_soap():
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
global output
global soap_response
output = output
question = (
"Use the following context given below to generate a detailed SOAP Report:\n\n"
)
question += output
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
word_count = len(output.split())
prompt = PromptTemplate(template=template, input_variables=["question"])
if word_count < 2000:
llm = ChatOpenAI(model="gpt-3.5-turbo")
elif word_count < 5000:
llm = ChatOpenAI(model="gpt-4")
else:
llm = ChatOpenAI(model="gpt-4-32k")
llm_chain = LLMChain(prompt=prompt, llm=llm)
soap_response = llm_chain.run(question)
return soap_response
def text_sbar():
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
global output
global sbar_response
output = output
question = (
"Use the following context given below to generate a detailed SBAR Report:\n\n"
)
question += output
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
word_count = len(output.split())
prompt = PromptTemplate(template=template, input_variables=["question"])
if word_count < 2000:
llm = ChatOpenAI(model="gpt-3.5-turbo")
elif word_count < 5000:
llm = ChatOpenAI(model="gpt-4")
else:
llm = ChatOpenAI(model="gpt-4-32k")
llm_chain = LLMChain(prompt=prompt, llm=llm)
sbar_response = llm_chain.run(question)
return sbar_response
global soap_path
global sbar_path
def soap_docx(name):
global soap_response
soap_response = soap_response
import docx
import os
global soap_path
destination_folder = "/home/user/app/soap_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
soap_path = f"/home/user/app/soap_docs/SOAP_{name}.docx"
doc = docx.Document()
doc.add_paragraph(soap_response)
doc.save(soap_path)
return "Successfully saved SOAP .docx File"
def sbar_docx(name):
global sbar_response
sbar_response = sbar_response
import docx
import os
global sbar_path
destination_folder = "/home/user/app/sbar_docs/"
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
sbar_path = f"/home/user/app/sbar_docs/SBAR_{name}.docx"
doc = docx.Document()
doc.add_paragraph(sbar_response)
doc.save(sbar_path)
return "Successfully saved SBAR .docx File"
def download_soap():
global soap_path
soap_path = soap_path
return soap_path
def download_sbar():
global sbar_path
sbar_path = sbar_path
return sbar_path
import gradio as gr
css = """
.col{
max-width: 50%;
margin: 0 auto;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
"""
#theme = gr.Theme.from_hub("shivi/calm_seafoam") this is for blue theme
#with gr.Blocks(theme=theme, css=css) as demo:
with gr.Blocks(css=css) as demo:
gr.Markdown("## <center>AI Emergency Scribe Plus App</center>")
with gr.Tab("Create SOAP and SBAR Reports"):
with gr.Column(elem_classes="col"):
with gr.Tab("From Recorded Audio"):
with gr.Column():
mic_audio_input = gr.Audio(source="microphone", type="filepath", label="Speak to the Microphone")
mic_audio_button = gr.Button("Generate Transcript")
mic_audio_output = gr.Textbox(label="Transcription Output")
gr.ClearButton([mic_audio_input, mic_audio_output])
with gr.Tab("SOAP Report"):
with gr.Column():
mic_text_soap_button = gr.Button("Generate SOAP Report")
mic_text_soap_output = gr.Textbox(label="SOAP Report")
mic_soap_docx_input = gr.Textbox(label="Enter the name of SOAP .docx File")
mic_soap_docx_button = gr.Button("Save SOAP Document")
mic_soap_docx_output = gr.Textbox(label="File Save Status")
mic_soap_download_button = gr.Button("Download SOAP .docx File")
mic_soap_download_output = gr.Files(label="Download Link")
gr.ClearButton([mic_text_soap_output, mic_soap_docx_input, mic_soap_docx_output, mic_soap_download_output])
with gr.Tab("SBAR Report"):
with gr.Column():
mic_text_sbar_button = gr.Button("Generate SBAR Report")
mic_text_sbar_output = gr.Textbox(label="SBAR Report")
mic_sbar_docx_input = gr.Textbox(label="Enter the name of SBAR .docx File")
mic_sbar_docx_button = gr.Button("Save SBAR Document")
mic_sbar_docx_output = gr.Textbox(label="File Save Status")
mic_sbar_download_button = gr.Button("Download SBAR .docx File")
mic_sbar_download_output = gr.Files(label="Download Link")
gr.ClearButton([mic_text_sbar_output, mic_sbar_docx_input, mic_sbar_docx_output, mic_sbar_download_output])
with gr.Tab("From Uploaded Audio"):
with gr.Column():
upload_audio_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File here")
upload_audio_button = gr.Button("Generate Transcript")
upload_audio_output = gr.Textbox(label="Transcription Output")
gr.ClearButton([upload_audio_input, upload_audio_output])
with gr.Tab("SOAP Report"):
with gr.Column():
upload_text_soap_button = gr.Button("Generate SOAP Report")
upload_text_soap_output = gr.Textbox(label="SOAP Report")
upload_soap_docx_input = gr.Textbox(label="Enter the name of SOAP .docx File")
upload_soap_docx_button = gr.Button("Save SOAP Document")
upload_soap_docx_output = gr.Textbox(label="File Save Status")
upload_soap_download_button = gr.Button("Download SOAP .docx File")
upload_soap_download_output = gr.Files(label="Download Link")
gr.ClearButton([upload_text_soap_output, upload_soap_docx_input, upload_soap_docx_output, upload_soap_download_output])
with gr.Tab("SBAR Report"):
with gr.Column():
upload_text_sbar_button = gr.Button("Generate SBAR Report")
upload_text_sbar_output = gr.Textbox(label="SBAR Report")
upload_sbar_docx_input = gr.Textbox(label="Enter the name of SBAR .docx File")
upload_sbar_docx_button = gr.Button("Save SBAR Document")
upload_sbar_docx_output = gr.Textbox(label="File Save Status")
upload_sbar_download_button = gr.Button("Download SBAR .docx File")
upload_sbar_download_output = gr.Files(label="Download Link")
gr.ClearButton([upload_text_sbar_output, upload_sbar_docx_input, upload_sbar_docx_output, upload_sbar_download_output])
with gr.Tab("From Text Transcript"):
with gr.Column():
text_transcript_input = gr.Textbox(label="Enter Your Transcript Here")
gr.ClearButton([text_transcript_input])
with gr.Tab("SOAP Report"):
with gr.Column():
text_text_soap_button = gr.Button("Generate SOAP Report")
text_text_soap_output = gr.Textbox(label="SOAP Report")
text_soap_docx_input = gr.Textbox(label="Enter the name of SOAP .docx File")
text_soap_docx_button = gr.Button("Save SOAP Document")
text_soap_docx_output = gr.Textbox(label="File Save Status")
text_soap_download_button = gr.Button("Download SOAP .docx File")
text_soap_download_output = gr.Files(label="Download Link")
gr.ClearButton([text_text_soap_output, text_soap_docx_input, text_soap_docx_output, text_soap_download_output])
with gr.Tab("SBAR Report"):
with gr.Column():
text_text_sbar_button = gr.Button("Generate SBAR Report")
text_text_sbar_output = gr.Textbox(label="SBAR Report")
text_sbar_docx_input = gr.Textbox(label="Enter the name of SBAR .docx File")
text_sbar_docx_button = gr.Button("Save SBAR Document")
text_sbar_docx_output = gr.Textbox(label="File Save Status")
text_sbar_download_button = gr.Button("Download SBAR .docx File")
text_sbar_download_output = gr.Files(label="Download Link")
gr.ClearButton([text_text_sbar_output, text_sbar_docx_input, text_sbar_docx_output, text_sbar_download_output])
with gr.Tab("Query SOAP and SBAR Reports"):
with gr.Column(elem_classes="col"):
with gr.Tab("Query SOAP Reports"):
with gr.Column():
soap_refresh_button = gr.Button("View SOAP Reports")
ask_soap_input = gr.CheckboxGroup(label="Choose File(s)")
ask_soap_question = gr.Textbox(label="Enter Your Question here")
ask_soap_button = gr.Button("Submit")
ask_soap_output = gr.Textbox(label="Your Question-Answer From Chosen File(s)")
ask_all_soap_button = gr.Button("Ask All SOAP Reports")
ask_all_soap_output = gr.Textbox(label="Your Question-Answer From All File(s)")
gr.ClearButton([ask_soap_input, ask_soap_question, ask_soap_output, ask_all_soap_output])
with gr.Tab("Query SBAR Reports"):
with gr.Column():
sbar_refresh_button = gr.Button("View SBAR Reports")
ask_sbar_input = gr.CheckboxGroup(label="Choose File(s)")
ask_sbar_question = gr.Textbox(label="Enter Your Question here")
ask_sbar_button = gr.Button("Submit")
ask_sbar_output = gr.Textbox(label="Your Question-Answer From Chosen File(s)")
ask_all_sbar_button = gr.Button("Ask all SBAR Reports")
ask_all_sbar_output = gr.Textbox(label="Your Question-Answer From All File(s)")
gr.ClearButton([ask_sbar_input, ask_sbar_question, ask_sbar_output, ask_all_sbar_output])
with gr.Tab("Query Your Documents"):
with gr.Column(elem_classes="col"):
with gr.Tab("Upload and Process Documents"):
with gr.Column():
file_upload_input = gr.Files(label="Upload File(s) here")
file_upload_button = gr.Button("Upload")
file_upload_output = gr.Textbox(label="Upload Output Status")
file_process_button = gr.Button("Process")
file_process_output = gr.Textbox(label="Process Output Status")
gr.ClearButton([file_upload_input, file_upload_output, file_process_output])
with gr.Tab("Query Documents"):
with gr.Column():
file_search_input = gr.Textbox(label="Enter Your Question here")
file_search_button = gr.Button("Search")
file_search_output = gr.Textbox(label="Your Question-Answer From Document")
search_gpt_button = gr.Button("Ask ChatGPT")
search_gpt_output = gr.Textbox(label="Your Question-Answer From ChatGPT")
file_delete_button = gr.Button("Delete")
file_delete_output = gr.Textbox(label="Delete Output Status")
gr.ClearButton([file_search_input, file_search_output, search_gpt_output, file_delete_output])
with gr.Tab("Query ER Knowledge Archive Documents"):
with gr.Column(elem_classes="col"):
local_process_button = gr.Button("Process")
local_process_output = gr.Textbox(label="Process Output Status")
local_search_input = gr.Textbox(label="Enter Your Question here")
local_search_button = gr.Button("Search")
local_search_output = gr.Textbox(label="Your Question-Answer From ER Knowledge Archive Documents")
local_gpt_button = gr.Button("Ask ChatGPT")
local_gpt_output = gr.Textbox(label="Your Question-Answer From ChatGPT")
gr.ClearButton([local_process_output, local_search_input, local_search_output, local_gpt_output])
#########################################################################################################
file_upload_button.click(save_file, inputs=file_upload_input, outputs=file_upload_output)
file_process_button.click(process_file, inputs=None, outputs=file_process_output)
file_search_button.click(search_file, inputs=file_search_input, outputs=file_search_output)
search_gpt_button.click(search_gpt, inputs=file_search_input, outputs=search_gpt_output)
file_delete_button.click(delete_file, inputs=None, outputs=file_delete_output)
#########################################################################################################
local_process_button.click(process_local, inputs=None, outputs=local_process_output)
local_search_button.click(local_search, inputs=local_search_input, outputs=local_search_output)
local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)
########################################################################################################
soap_refresh_button.click(soap_refresh, inputs=None, outputs=ask_soap_input)
ask_soap_button.click(ask_soap, inputs=[ask_soap_input, ask_soap_question], outputs=ask_soap_output)
sbar_refresh_button.click(sbar_refresh, inputs=None, outputs=ask_sbar_input)
ask_sbar_button.click(ask_sbar, inputs=[ask_sbar_input, ask_sbar_question], outputs=ask_sbar_output)
ask_all_soap_button.click(ask_all_soap, inputs=ask_soap_question, outputs=ask_all_soap_output)
ask_all_sbar_button.click(ask_all_sbar, inputs=ask_sbar_question, outputs=ask_all_sbar_output)
########################################################################################################
mic_audio_button.click(audio_text, inputs=mic_audio_input, outputs=mic_audio_output)
mic_text_soap_button.click(text_soap, inputs=None, outputs=mic_text_soap_output)
mic_text_sbar_button.click(text_sbar, inputs=None, outputs=mic_text_sbar_output)
mic_soap_docx_button.click(soap_docx, inputs=mic_soap_docx_input, outputs=mic_soap_docx_output)
mic_sbar_docx_button.click(sbar_docx, inputs=mic_sbar_docx_input, outputs=mic_sbar_docx_output)
mic_soap_download_button.click(download_soap, inputs=None, outputs=mic_soap_download_output)
mic_sbar_download_button.click(download_sbar, inputs=None, outputs=mic_sbar_download_output)
##########################################################################################################
upload_audio_button.click(audio_text, inputs=upload_audio_input, outputs=upload_audio_output)
upload_text_soap_button.click(text_soap, inputs=None, outputs=upload_text_soap_output)
upload_text_sbar_button.click(text_sbar, inputs=None, outputs=upload_text_sbar_output)
upload_soap_docx_button.click(soap_docx, inputs=upload_soap_docx_input, outputs=upload_soap_docx_output)
upload_sbar_docx_button.click(sbar_docx, inputs=upload_sbar_docx_input, outputs=upload_sbar_docx_output)
upload_soap_download_button.click(download_soap, inputs=None, outputs=upload_soap_download_output)
upload_sbar_download_button.click(download_sbar, inputs=None, outputs=upload_sbar_download_output)
############################################################################################################
text_text_soap_button.click(transcript_soap, inputs=text_transcript_input, outputs=text_text_soap_output)
text_text_sbar_button.click(transcript_sbar, inputs=text_transcript_input, outputs=text_text_sbar_output)
text_soap_docx_button.click(soap_docx, inputs=text_soap_docx_input, outputs=text_soap_docx_output)
text_sbar_docx_button.click(sbar_docx, inputs=text_sbar_docx_input, outputs=text_sbar_docx_output)
text_soap_download_button.click(download_soap, inputs=None, outputs=text_soap_download_output)
text_sbar_download_button.click(download_sbar, inputs=None, outputs=text_sbar_download_output)
#############################################################################################################
demo.queue()
demo.launch()