|
import argparse
|
|
import sys
|
|
from multiprocessing import Pool
|
|
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from tqdm import tqdm
|
|
|
|
import commons
|
|
import utils
|
|
from config import config
|
|
from text import cleaned_text_to_sequence, get_bert
|
|
|
|
|
|
def process_line(x):
|
|
line, add_blank = x
|
|
device = config.bert_gen_config.device
|
|
if config.bert_gen_config.use_multi_device:
|
|
rank = mp.current_process()._identity
|
|
rank = rank[0] if len(rank) > 0 else 0
|
|
if torch.cuda.is_available():
|
|
gpu_id = rank % torch.cuda.device_count()
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
else:
|
|
device = torch.device("cpu")
|
|
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
|
phone = phones.split(" ")
|
|
tone = [int(i) for i in tone.split(" ")]
|
|
word2ph = [int(i) for i in word2ph.split(" ")]
|
|
word2ph = [i for i in word2ph]
|
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
|
|
|
if add_blank:
|
|
phone = commons.intersperse(phone, 0)
|
|
tone = commons.intersperse(tone, 0)
|
|
language = commons.intersperse(language, 0)
|
|
for i in range(len(word2ph)):
|
|
word2ph[i] = word2ph[i] * 2
|
|
word2ph[0] += 1
|
|
|
|
bert_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".bert.pt")
|
|
|
|
try:
|
|
bert = torch.load(bert_path)
|
|
assert bert.shape[-1] == len(phone)
|
|
except Exception:
|
|
bert = get_bert(text, word2ph, language_str, device)
|
|
assert bert.shape[-1] == len(phone)
|
|
torch.save(bert, bert_path)
|
|
|
|
|
|
preprocess_text_config = config.preprocess_text_config
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-c", "--config", type=str, default=config.bert_gen_config.config_path
|
|
)
|
|
parser.add_argument(
|
|
"--num_processes", type=int, default=config.bert_gen_config.num_processes
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
config_path = args.config
|
|
hps = utils.get_hparams_from_file(config_path)
|
|
lines = []
|
|
with open(hps.data.training_files, encoding="utf-8") as f:
|
|
lines.extend(f.readlines())
|
|
|
|
with open(hps.data.validation_files, encoding="utf-8") as f:
|
|
lines.extend(f.readlines())
|
|
add_blank = [hps.data.add_blank] * len(lines)
|
|
|
|
if len(lines) != 0:
|
|
num_processes = args.num_processes
|
|
with Pool(processes=num_processes) as pool:
|
|
for _ in tqdm(
|
|
pool.imap_unordered(process_line, zip(lines, add_blank)),
|
|
total=len(lines),
|
|
file=sys.stdout,
|
|
):
|
|
|
|
pass
|
|
|
|
print(f"bert.pt is generated! total: {len(lines)} bert.pt files.")
|
|
|