Spaces:
Sleeping
Sleeping
| from keras.models import load_model | |
| from keras.layers import Rescaling,Resizing | |
| import tensorflow as tf | |
| import numpy as np | |
| import gradio as gr | |
| from numpy import asarray | |
| model = load_model('./checkpoints/checkpoint.model.keras') | |
| scale = Rescaling(1./255) | |
| resize = Resizing(224,224) | |
| def action_recognition(image): | |
| preds = ['Calling','Clapping','Cycling','Dancing','Drinking','Eating','Fighting', | |
| 'Hugging','Laughing','Listening to Music','Running or Walking','Sitting','Sleeping','Texting','Using Laptop'] | |
| # Read image and showy | |
| img = asarray(image) | |
| # Preprocess image | |
| img = scale(img) | |
| img = resize(img) | |
| img = tf.reshape(img,(1,224,224,3)) | |
| # prediction | |
| pred = model.predict(img) | |
| # Mapping indices to their respective class labels | |
| if np.argmax(pred) == 0: | |
| print('Calling') | |
| elif np.argmax(pred) == 1: | |
| print('Clapping') | |
| elif np.argmax(pred) == 2: | |
| print('Cycling') | |
| elif np.argmax(pred) == 3: | |
| print('Dancing') | |
| elif np.argmax(pred) == 4: | |
| print('Drinking') | |
| elif np.argmax(pred) == 5: | |
| print('Eating') | |
| elif np.argmax(pred) == 6: | |
| print('Fighting') | |
| elif np.argmax(pred) == 7: | |
| print('Hugging') | |
| elif np.argmax(pred) == 8: | |
| print('Laughing') | |
| elif np.argmax(pred) == 9: | |
| print('Listening to Music') | |
| elif np.argmax(pred) == 10: | |
| print('Running') | |
| elif np.argmax(pred) == 11: | |
| print('Sitting') | |
| elif np.argmax(pred) == 12: | |
| print('Sleeping') | |
| elif np.argmax(pred) == 13: | |
| print('Texting') | |
| elif np.argmax(pred) == 14: | |
| print('Using Laptop') | |
| # Return the predicted class index and prediction array | |
| return preds[np.argmax(pred)] | |
| demo = gr.Interface( | |
| fn=action_recognition, | |
| inputs=[gr.Image(label="Image")], | |
| outputs=['text'], | |
| allow_flagging='never' | |
| ) | |
| demo.launch(share=False,debug=False) | |