Spaces:
Sleeping
Sleeping
Commit
·
973bb27
1
Parent(s):
d13db1b
0.0.1
Browse files- .gitattributes +0 -35
- README.md +14 -1
- app.py +96 -0
- example.py +14 -0
- packages.txt +1 -0
- requirements.txt +4 -0
.gitattributes
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Whisper Gradio Template
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
|
@@ -10,4 +10,17 @@ pinned: false
|
|
| 10 |
short_description: hf space gradio app to transcribe audio using whisper ai
|
| 11 |
---
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: Whisper Gradio Template
|
| 3 |
+
emoji: 🎙️
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
|
|
|
| 10 |
short_description: hf space gradio app to transcribe audio using whisper ai
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Whisper Gradio App
|
| 14 |
+
|
| 15 |
+
This Gradio app uses OpenAI's Whisper model to transcribe audio files into multiple formats:
|
| 16 |
+
- Plain text transcription
|
| 17 |
+
- SRT subtitle format
|
| 18 |
+
- Detailed JSON output with timestamps and metadata
|
| 19 |
+
|
| 20 |
+
## Usage
|
| 21 |
+
1. Upload an audio file (supports various formats)
|
| 22 |
+
2. Wait for the model to process the audio
|
| 23 |
+
3. Get the transcription in three different formats
|
| 24 |
+
|
| 25 |
+
|
| 26 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import whisper
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
import spaces
|
| 6 |
+
from datetime import timedelta
|
| 7 |
+
import os
|
| 8 |
+
import zipfile
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
def format_timestamp(seconds):
|
| 12 |
+
"""Convert seconds to SRT timestamp format"""
|
| 13 |
+
td = timedelta(seconds=seconds)
|
| 14 |
+
hours = td.seconds//3600
|
| 15 |
+
minutes = (td.seconds//60)%60
|
| 16 |
+
seconds = td.seconds%60
|
| 17 |
+
milliseconds = td.microseconds//1000
|
| 18 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
| 19 |
+
|
| 20 |
+
def save_files(text, srt, json_data, base_name):
|
| 21 |
+
"""Save transcription in different formats and create zip"""
|
| 22 |
+
# Create output directory if it doesn't exist
|
| 23 |
+
output_dir = Path("transcriptions")
|
| 24 |
+
output_dir.mkdir(exist_ok=True)
|
| 25 |
+
|
| 26 |
+
# Generate filenames
|
| 27 |
+
base_name = Path(base_name).stem
|
| 28 |
+
txt_path = output_dir / f"{base_name}.txt"
|
| 29 |
+
srt_path = output_dir / f"{base_name}.srt"
|
| 30 |
+
json_path = output_dir / f"{base_name}.json"
|
| 31 |
+
zip_path = output_dir / f"{base_name}_all.zip"
|
| 32 |
+
|
| 33 |
+
# Save individual files
|
| 34 |
+
txt_path.write_text(text)
|
| 35 |
+
srt_path.write_text(srt)
|
| 36 |
+
json_path.write_text(json_data)
|
| 37 |
+
|
| 38 |
+
# Create ZIP file
|
| 39 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 40 |
+
zipf.write(txt_path, txt_path.name)
|
| 41 |
+
zipf.write(srt_path, srt_path.name)
|
| 42 |
+
zipf.write(json_path, json_path.name)
|
| 43 |
+
|
| 44 |
+
return str(txt_path), str(srt_path), str(json_path), str(zip_path)
|
| 45 |
+
|
| 46 |
+
@spaces.GPU
|
| 47 |
+
def transcribe(audio_file):
|
| 48 |
+
# Load the Whisper model
|
| 49 |
+
model = whisper.load_model("large-v3-turbo")
|
| 50 |
+
|
| 51 |
+
# Transcribe the audio
|
| 52 |
+
result = model.transcribe(audio_file)
|
| 53 |
+
|
| 54 |
+
# Format as plain text
|
| 55 |
+
text_output = result["text"]
|
| 56 |
+
|
| 57 |
+
# Format as JSON
|
| 58 |
+
json_output = json.dumps(result, indent=2)
|
| 59 |
+
|
| 60 |
+
# Format as SRT
|
| 61 |
+
srt_output = ""
|
| 62 |
+
for i, segment in enumerate(result["segments"], 1):
|
| 63 |
+
start_time = format_timestamp(segment["start"])
|
| 64 |
+
end_time = format_timestamp(segment["end"])
|
| 65 |
+
text = segment["text"].strip()
|
| 66 |
+
srt_output += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
| 67 |
+
|
| 68 |
+
# Save files and get paths
|
| 69 |
+
txt_file, srt_file, json_file, zip_file = save_files(
|
| 70 |
+
text_output, srt_output, json_output,
|
| 71 |
+
os.path.basename(audio_file)
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
return (
|
| 75 |
+
txt_file, srt_file, json_file, zip_file, text_output, srt_output, json_output
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Create the Gradio interface
|
| 79 |
+
demo = gr.Interface(
|
| 80 |
+
fn=transcribe,
|
| 81 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
| 82 |
+
outputs=[
|
| 83 |
+
gr.File(label="Download TXT"),
|
| 84 |
+
gr.File(label="Download SRT"),
|
| 85 |
+
gr.File(label="Download JSON"),
|
| 86 |
+
gr.File(label="Download All (ZIP)"),
|
| 87 |
+
gr.Textbox(label="Transcription", lines=5),
|
| 88 |
+
gr.Textbox(label="SRT Format"),
|
| 89 |
+
gr.JSON(label="JSON Output")
|
| 90 |
+
],
|
| 91 |
+
title="Audio Transcription with Whisper",
|
| 92 |
+
description="Upload an audio file to transcribe it into text, SRT, and JSON formats using OpenAI's Whisper model. You can download the results in different formats or get everything in a ZIP file."
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
demo.launch()
|
example.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
zero = torch.Tensor([0]).cuda()
|
| 6 |
+
print(zero.device) # <-- 'cpu' 🤔
|
| 7 |
+
|
| 8 |
+
@spaces.GPU
|
| 9 |
+
def greet(n):
|
| 10 |
+
print(zero.device) # <-- 'cuda:0' 🤗
|
| 11 |
+
return f"Hello {zero + n} Tensor"
|
| 12 |
+
|
| 13 |
+
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
| 14 |
+
demo.launch(share=True)
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
openai-whisper
|
| 3 |
+
spaces
|
| 4 |
+
torch
|