audio: chunk_size: 261632 dim_f: 4096 dim_t: 512 hop_length: 512 n_fft: 8192 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.001 model: encoder_name: tu-maxvit_large_tf_512 # look here for possibilities: https://github.com/qubvel/segmentation_models.pytorch#encoders- decoder_type: unet # unet, fpn act: gelu num_channels: 128 num_subbands: 8 loss_multistft: fft_sizes: - 1024 - 2048 - 4096 hop_sizes: - 512 - 1024 - 2048 win_lengths: - 1024 - 2048 - 4096 window: "hann_window" scale: "mel" n_bins: 128 sample_rate: 44100 perceptual_weighting: true w_sc: 1.0 w_log_mag: 1.0 w_lin_mag: 0.0 w_phs: 0.0 mag_distance: "L1" training: batch_size: 8 gradient_accumulation_steps: 1 grad_clip: 0 instruments: - vocals - other lr: 5.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: null num_epochs: 1000 num_steps: 2000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adamw other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true augmentations: enable: true # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3) mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02) - 0.2 - 0.02 mixup_loudness_min: 0.5 mixup_loudness_max: 1.5 inference: batch_size: 1 dim_t: 512 num_overlap: 4