audio: chunk_size: 132300 # samplerate * segment hop_length: 1024 min_mean_abs: 0.0 training: batch_size: 8 gradient_accumulation_steps: 1 grad_clip: 0 segment: 11 shift: 1 samplerate: 44100 channels: 2 normalize: true instruments: ['vocals', 'other'] target_instrument: null num_epochs: 1000 num_steps: 1000 optimizer: prodigy lr: 1.0 patience: 2 reduce_factor: 0.95 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 read_metadata_procs: 8 other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true model: sr: 44100 win: 2048 stride: 512 feature_dim: 128 num_repeat_mask: 8 num_repeat_map: 4 num_output: 2 augmentations: enable: false # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3) mixup_probs: [0.2, 0.02] mixup_loudness_min: 0.5 mixup_loudness_max: 1.5 inference: num_overlap: 2 batch_size: 4