name: "MultiMaskMultiSourceBandSplitRNN" audio: chunk_size: 264600 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.001 model: in_channel: 1 stems: ['vocals', 'other'] band_specs: "musical" n_bands: 64 fs: 44100 require_no_overlap: false require_no_gap: true normalize_channel_independently: false treat_channel_as_feature: true n_sqm_modules: 8 emb_dim: 128 rnn_dim: 256 bidirectional: true rnn_type: "GRU" mlp_dim: 512 hidden_activation: "Tanh" hidden_activation_kwargs: null complex_mask: true n_fft: 2048 win_length: 2048 hop_length: 512 window_fn: "hann_window" wkwargs: null power: null center: true normalized: true pad_mode: "constant" onesided: true training: batch_size: 4 gradient_accumulation_steps: 4 grad_clip: 0 instruments: - vocals - other lr: 9.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: null num_epochs: 1000 num_steps: 1000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adam other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true augmentations: enable: true # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3) mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02) - 0.2 - 0.02 mixup_loudness_min: 0.5 mixup_loudness_max: 1.5 inference: batch_size: 1 dim_t: 256 num_overlap: 4