audio: chunk_size: 485100 # samplerate * segment min_mean_abs: 0.000 hop_length: 1024 training: batch_size: 8 gradient_accumulation_steps: 1 grad_clip: 0 segment: 11 shift: 1 samplerate: 44100 channels: 2 normalize: true instruments: ['drums', 'bass', 'other', 'vocals'] target_instrument: null num_epochs: 1000 num_steps: 1000 optimizer: adam lr: 9.0e-05 patience: 2 reduce_factor: 0.95 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental use_amp: false # enable or disable usage of mixed precision (float16) - usually it must be true augmentations: enable: true # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 inference: num_overlap: 4 batch_size: 8 model: hdemucs hdemucs: # see demucs/hdemucs.py for a detailed description channels: 48 channels_time: null growth: 2 nfft: 4096 wiener_iters: 0 end_iters: 0 wiener_residual: False cac: True depth: 6 rewrite: True hybrid: True hybrid_old: False multi_freqs: [] multi_freqs_depth: 3 freq_emb: 0.2 emb_scale: 10 emb_smooth: True kernel_size: 8 stride: 4 time_stride: 2 context: 1 context_enc: 0 norm_starts: 4 norm_groups: 4 dconv_mode: 1 dconv_depth: 2 dconv_comp: 4 dconv_attn: 4 dconv_lstm: 4 dconv_init: 0.001 rescale: 0.1