audio: chunk_size: 261632 dim_f: 4096 dim_t: 512 hop_length: 512 n_fft: 8192 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.000 model: encoder_name: maxvit_tiny_tf_512 # look with torchseg.list_encoders(). Currently 858 available decoder_type: unet # unet, fpn act: gelu num_channels: 128 num_subbands: 8 training: batch_size: 18 gradient_accumulation_steps: 1 grad_clip: 1.0 instruments: - vocals - other lr: 1.0e-04 patience: 2 reduce_factor: 0.95 target_instrument: null num_epochs: 1000 num_steps: 1000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: radam other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true augmentations: enable: false # enable or disable all augmentations (to fast disable if needed) loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max) loudness_min: 0.5 loudness_max: 1.5 mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3) mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02) - 0.2 - 0.02 mixup_loudness_min: 0.5 mixup_loudness_max: 1.5 all: channel_shuffle: 0.5 # Set 0 or lower to disable random_inverse: 0.1 # inverse track (better lower probability) random_polarity: 0.5 # polarity change (multiply waveform to -1) inference: batch_size: 8 dim_t: 512 num_overlap: 2