|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
from transformers import UperNetForSemanticSegmentation |
|
from utils import prefer_target_instrument |
|
|
|
class STFT: |
|
def __init__(self, config): |
|
self.n_fft = config.n_fft |
|
self.hop_length = config.hop_length |
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True) |
|
self.dim_f = config.dim_f |
|
|
|
def __call__(self, x): |
|
window = self.window.to(x.device) |
|
batch_dims = x.shape[:-2] |
|
c, t = x.shape[-2:] |
|
x = x.reshape([-1, t]) |
|
x = torch.stft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
window=window, |
|
center=True, |
|
return_complex=True |
|
) |
|
x = torch.view_as_real(x) |
|
x = x.permute([0, 3, 1, 2]) |
|
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]]) |
|
return x[..., :self.dim_f, :] |
|
|
|
def inverse(self, x): |
|
window = self.window.to(x.device) |
|
batch_dims = x.shape[:-3] |
|
c, f, t = x.shape[-3:] |
|
n = self.n_fft // 2 + 1 |
|
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device) |
|
x = torch.cat([x, f_pad], -2) |
|
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t]) |
|
x = x.permute([0, 2, 3, 1]) |
|
x = x[..., 0] + x[..., 1] * 1.j |
|
x = torch.istft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
window=window, |
|
center=True |
|
) |
|
x = x.reshape([*batch_dims, 2, -1]) |
|
return x |
|
|
|
|
|
def get_norm(norm_type): |
|
def norm(c, norm_type): |
|
if norm_type == 'BatchNorm': |
|
return nn.BatchNorm2d(c) |
|
elif norm_type == 'InstanceNorm': |
|
return nn.InstanceNorm2d(c, affine=True) |
|
elif 'GroupNorm' in norm_type: |
|
g = int(norm_type.replace('GroupNorm', '')) |
|
return nn.GroupNorm(num_groups=g, num_channels=c) |
|
else: |
|
return nn.Identity() |
|
|
|
return partial(norm, norm_type=norm_type) |
|
|
|
|
|
def get_act(act_type): |
|
if act_type == 'gelu': |
|
return nn.GELU() |
|
elif act_type == 'relu': |
|
return nn.ReLU() |
|
elif act_type[:3] == 'elu': |
|
alpha = float(act_type.replace('elu', '')) |
|
return nn.ELU(alpha) |
|
else: |
|
raise Exception |
|
|
|
|
|
class Upscale(nn.Module): |
|
def __init__(self, in_c, out_c, scale, norm, act): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
norm(in_c), |
|
act, |
|
nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class Downscale(nn.Module): |
|
def __init__(self, in_c, out_c, scale, norm, act): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
norm(in_c), |
|
act, |
|
nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class TFC_TDF(nn.Module): |
|
def __init__(self, in_c, c, l, f, bn, norm, act): |
|
super().__init__() |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(l): |
|
block = nn.Module() |
|
|
|
block.tfc1 = nn.Sequential( |
|
norm(in_c), |
|
act, |
|
nn.Conv2d(in_c, c, 3, 1, 1, bias=False), |
|
) |
|
block.tdf = nn.Sequential( |
|
norm(c), |
|
act, |
|
nn.Linear(f, f // bn, bias=False), |
|
norm(c), |
|
act, |
|
nn.Linear(f // bn, f, bias=False), |
|
) |
|
block.tfc2 = nn.Sequential( |
|
norm(c), |
|
act, |
|
nn.Conv2d(c, c, 3, 1, 1, bias=False), |
|
) |
|
block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False) |
|
|
|
self.blocks.append(block) |
|
in_c = c |
|
|
|
def forward(self, x): |
|
for block in self.blocks: |
|
s = block.shortcut(x) |
|
x = block.tfc1(x) |
|
x = x + block.tdf(x) |
|
x = block.tfc2(x) |
|
x = x + s |
|
return x |
|
|
|
|
|
class Swin_UperNet_Model(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
act = get_act(act_type=config.model.act) |
|
|
|
self.num_target_instruments = len(prefer_target_instrument(config)) |
|
self.num_subbands = config.model.num_subbands |
|
|
|
dim_c = self.num_subbands * config.audio.num_channels * 2 |
|
c = config.model.num_channels |
|
f = config.audio.dim_f // self.num_subbands |
|
|
|
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False) |
|
|
|
self.swin_upernet_model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-large") |
|
|
|
self.swin_upernet_model.auxiliary_head.classifier = nn.Conv2d(256, c, kernel_size=(1, 1), stride=(1, 1)) |
|
self.swin_upernet_model.decode_head.classifier = nn.Conv2d(512, c, kernel_size=(1, 1), stride=(1, 1)) |
|
self.swin_upernet_model.backbone.embeddings.patch_embeddings.projection = nn.Conv2d(c, 192, kernel_size=(4, 4), stride=(4, 4)) |
|
|
|
self.final_conv = nn.Sequential( |
|
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False), |
|
act, |
|
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False) |
|
) |
|
|
|
self.stft = STFT(config.audio) |
|
|
|
def cac2cws(self, x): |
|
k = self.num_subbands |
|
b, c, f, t = x.shape |
|
x = x.reshape(b, c, k, f // k, t) |
|
x = x.reshape(b, c * k, f // k, t) |
|
return x |
|
|
|
def cws2cac(self, x): |
|
k = self.num_subbands |
|
b, c, f, t = x.shape |
|
x = x.reshape(b, c // k, k, f, t) |
|
x = x.reshape(b, c // k, f * k, t) |
|
return x |
|
|
|
def forward(self, x): |
|
|
|
x = self.stft(x) |
|
|
|
mix = x = self.cac2cws(x) |
|
|
|
first_conv_out = x = self.first_conv(x) |
|
|
|
x = x.transpose(-1, -2) |
|
|
|
x = self.swin_upernet_model(x).logits |
|
|
|
x = x.transpose(-1, -2) |
|
|
|
x = x * first_conv_out |
|
|
|
x = self.final_conv(torch.cat([mix, x], 1)) |
|
|
|
x = self.cws2cac(x) |
|
|
|
if self.num_target_instruments > 1: |
|
b, c, f, t = x.shape |
|
x = x.reshape(b, self.num_target_instruments, -1, f, t) |
|
|
|
x = self.stft.inverse(x) |
|
return x |
|
|
|
|
|
if __name__ == "__main__": |
|
model = UperNetForSemanticSegmentation.from_pretrained("./results/", ignore_mismatched_sizes=True) |
|
print(model) |
|
print(model.auxiliary_head.classifier) |
|
print(model.decode_head.classifier) |
|
|
|
x = torch.zeros((2, 16, 512, 512), dtype=torch.float32) |
|
res = model(x) |
|
print(res.logits.shape) |
|
model.save_pretrained('./results/') |