ASesYusuf1's picture
Upload folder using huggingface_hub
3978e51
# https://github.com/Human9000/nd-Mamba2-torch
from __future__ import print_function
import torch
import torch.nn as nn
import numpy as np
from torch.utils.checkpoint import checkpoint_sequential
try:
from mamba_ssm.modules.mamba2 import Mamba2
except Exception as e:
print('Exception during load Mamba2 modules: {}'.format(str(e)))
print('Load local torch implementation!')
from .ex_bi_mamba2 import Mamba2
class MambaBlock(nn.Module):
def __init__(self, in_channels):
super(MambaBlock, self).__init__()
self.forward_mamba2 = Mamba2(
d_model=in_channels,
d_state=128,
d_conv=4,
expand=4,
headdim=64,
)
self.backward_mamba2 = Mamba2(
d_model=in_channels,
d_state=128,
d_conv=4,
expand=4,
headdim=64,
)
def forward(self, input):
forward_f = input
forward_f_output = self.forward_mamba2(forward_f)
backward_f = torch.flip(input, [1])
backward_f_output = self.backward_mamba2(backward_f)
backward_f_output2 = torch.flip(backward_f_output, [1])
output = torch.cat([forward_f_output + input, backward_f_output2+input], -1)
return output
class TAC(nn.Module):
"""
A transform-average-concatenate (TAC) module.
"""
def __init__(self, input_size, hidden_size):
super(TAC, self).__init__()
self.input_size = input_size
self.eps = torch.finfo(torch.float32).eps
self.input_norm = nn.GroupNorm(1, input_size, self.eps)
self.TAC_input = nn.Sequential(nn.Linear(input_size, hidden_size),
nn.Tanh()
)
self.TAC_mean = nn.Sequential(nn.Linear(hidden_size, hidden_size),
nn.Tanh()
)
self.TAC_output = nn.Sequential(nn.Linear(hidden_size*2, input_size),
nn.Tanh()
)
def forward(self, input):
# input shape: batch, group, N, *
batch_size, G, N = input.shape[:3]
output = self.input_norm(input.view(batch_size*G, N, -1)).view(batch_size, G, N, -1)
T = output.shape[-1]
# transform
group_input = output # B, G, N, T
group_input = group_input.permute(0,3,1,2).contiguous().view(-1, N) # B*T*G, N
group_output = self.TAC_input(group_input).view(batch_size, T, G, -1) # B, T, G, H
# mean pooling
group_mean = group_output.mean(2).view(batch_size*T, -1) # B*T, H
group_mean = self.TAC_mean(group_mean).unsqueeze(1).expand(batch_size*T, G, group_mean.shape[-1]).contiguous() # B*T, G, H
# concate
group_output = group_output.view(batch_size*T, G, -1) # B*T, G, H
group_output = torch.cat([group_output, group_mean], 2) # B*T, G, 2H
group_output = self.TAC_output(group_output.view(-1, group_output.shape[-1])) # B*T*G, N
group_output = group_output.view(batch_size, T, G, -1).permute(0,2,3,1).contiguous() # B, G, N, T
output = input + group_output.view(input.shape)
return output
class ResMamba(nn.Module):
def __init__(self, input_size, hidden_size, dropout=0., bidirectional=True):
super(ResMamba, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.eps = torch.finfo(torch.float32).eps
self.norm = nn.GroupNorm(1, input_size, self.eps)
self.dropout = nn.Dropout(p=dropout)
self.rnn = MambaBlock(input_size)
self.proj = nn.Linear(input_size*2 ,input_size)
# linear projection layer
def forward(self, input):
# input shape: batch, dim, seq
rnn_output = self.rnn(self.dropout(self.norm(input)).transpose(1, 2).contiguous())
rnn_output = self.proj(rnn_output.contiguous().view(-1, rnn_output.shape[2])).view(input.shape[0],
input.shape[2],
input.shape[1])
return input + rnn_output.transpose(1, 2).contiguous()
class BSNet(nn.Module):
def __init__(self, in_channel, nband=7):
super(BSNet, self).__init__()
self.nband = nband
self.feature_dim = in_channel // nband
self.band_rnn = ResMamba(self.feature_dim, self.feature_dim*2)
self.band_comm = ResMamba(self.feature_dim, self.feature_dim*2)
self.channel_comm = TAC(self.feature_dim, self.feature_dim*3)
def forward(self, input):
# input shape: B, nch, nband*N, T
B, nch, N, T = input.shape
band_output = self.band_rnn(input.view(B*nch*self.nband, self.feature_dim, -1)).view(B*nch, self.nband, -1, T)
# band comm
band_output = band_output.permute(0,3,2,1).contiguous().view(B*nch*T, -1, self.nband)
output = self.band_comm(band_output).view(B*nch, T, -1, self.nband).permute(0,3,2,1).contiguous()
# channel comm
output = output.view(B, nch, self.nband, -1, T).transpose(1,2).contiguous().view(B*self.nband, nch, -1, T)
output = self.channel_comm(output).view(B, self.nband, nch, -1, T).transpose(1,2).contiguous()
return output.view(B, nch, N, T)
class Separator(nn.Module):
def __init__(self, sr=44100, win=2048, stride=512, feature_dim=128, num_repeat_mask=8, num_repeat_map=4, num_output=4):
super(Separator, self).__init__()
self.sr = sr
self.win = win
self.stride = stride
self.group = self.win // 2
self.enc_dim = self.win // 2 + 1
self.feature_dim = feature_dim
self.num_output = num_output
self.eps = torch.finfo(torch.float32).eps
# 0-1k (50 hop), 1k-2k (100 hop), 2k-4k (250 hop), 4k-8k (500 hop), 8k-16k (1k hop), 16k-20k (2k hop), 20k-inf
bandwidth_50 = int(np.floor(50 / (sr / 2.) * self.enc_dim))
bandwidth_100 = int(np.floor(100 / (sr / 2.) * self.enc_dim))
bandwidth_250 = int(np.floor(250 / (sr / 2.) * self.enc_dim))
bandwidth_500 = int(np.floor(500 / (sr / 2.) * self.enc_dim))
bandwidth_1k = int(np.floor(1000 / (sr / 2.) * self.enc_dim))
bandwidth_2k = int(np.floor(2000 / (sr / 2.) * self.enc_dim))
self.band_width = [bandwidth_50]*20
self.band_width += [bandwidth_100]*10
self.band_width += [bandwidth_250]*8
self.band_width += [bandwidth_500]*8
self.band_width += [bandwidth_1k]*8
self.band_width += [bandwidth_2k]*2
self.band_width.append(self.enc_dim - np.sum(self.band_width))
self.nband = len(self.band_width)
print(self.band_width)
self.BN_mask = nn.ModuleList([])
for i in range(self.nband):
self.BN_mask.append(nn.Sequential(nn.GroupNorm(1, self.band_width[i]*2, self.eps),
nn.Conv1d(self.band_width[i]*2, self.feature_dim, 1)
)
)
self.BN_map = nn.ModuleList([])
for i in range(self.nband):
self.BN_map.append(nn.Sequential(nn.GroupNorm(1, self.band_width[i] * 2, self.eps),
nn.Conv1d(self.band_width[i] * 2, self.feature_dim, 1)
)
)
self.separator_mask = []
for i in range(num_repeat_mask):
self.separator_mask.append(BSNet(self.nband*self.feature_dim, self.nband))
self.separator_mask = nn.Sequential(*self.separator_mask)
self.separator_map = []
for i in range(num_repeat_map):
self.separator_map.append(BSNet(self.nband * self.feature_dim, self.nband))
self.separator_map = nn.Sequential(*self.separator_map)
self.in_conv = nn.Conv1d(self.feature_dim*2, self.feature_dim, 1)
self.Tanh = nn.Tanh()
self.mask = nn.ModuleList([])
self.map = nn.ModuleList([])
for i in range(self.nband):
self.mask.append(nn.Sequential(nn.GroupNorm(1, self.feature_dim, torch.finfo(torch.float32).eps),
nn.Conv1d(self.feature_dim, self.feature_dim*1*self.num_output, 1),
nn.Tanh(),
nn.Conv1d(self.feature_dim*1*self.num_output, self.feature_dim*1*self.num_output, 1, groups=self.num_output),
nn.Tanh(),
nn.Conv1d(self.feature_dim*1*self.num_output, self.band_width[i]*4*self.num_output, 1, groups=self.num_output)
)
)
self.map.append(nn.Sequential(nn.GroupNorm(1, self.feature_dim, torch.finfo(torch.float32).eps),
nn.Conv1d(self.feature_dim, self.feature_dim*1*self.num_output, 1),
nn.Tanh(),
nn.Conv1d(self.feature_dim*1*self.num_output, self.feature_dim*1*self.num_output, 1, groups=self.num_output),
nn.Tanh(),
nn.Conv1d(self.feature_dim*1*self.num_output, self.band_width[i]*4*self.num_output, 1, groups=self.num_output)
)
)
def pad_input(self, input, window, stride):
"""
Zero-padding input according to window/stride size.
"""
batch_size, nsample = input.shape
# pad the signals at the end for matching the window/stride size
rest = window - (stride + nsample % window) % window
if rest > 0:
pad = torch.zeros(batch_size, rest).type(input.type())
input = torch.cat([input, pad], 1)
pad_aux = torch.zeros(batch_size, stride).type(input.type())
input = torch.cat([pad_aux, input, pad_aux], 1)
return input, rest
def forward(self, input):
# input shape: (B, C, T)
batch_size, nch, nsample = input.shape
input = input.view(batch_size*nch, -1)
# frequency-domain separation
spec = torch.stft(input, n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device).type(input.type()),
return_complex=True)
# concat real and imag, split to subbands
spec_RI = torch.stack([spec.real, spec.imag], 1) # B*nch, 2, F, T
subband_spec_RI = []
subband_spec = []
band_idx = 0
for i in range(len(self.band_width)):
subband_spec_RI.append(spec_RI[:,:,band_idx:band_idx+self.band_width[i]].contiguous())
subband_spec.append(spec[:,band_idx:band_idx+self.band_width[i]]) # B*nch, BW, T
band_idx += self.band_width[i]
# normalization and bottleneck
subband_feature_mask = []
for i in range(len(self.band_width)):
subband_feature_mask.append(self.BN_mask[i](subband_spec_RI[i].view(batch_size*nch, self.band_width[i]*2, -1)))
subband_feature_mask = torch.stack(subband_feature_mask, 1) # B, nband, N, T
subband_feature_map = []
for i in range(len(self.band_width)):
subband_feature_map.append(self.BN_map[i](subband_spec_RI[i].view(batch_size * nch, self.band_width[i] * 2, -1)))
subband_feature_map = torch.stack(subband_feature_map, 1) # B, nband, N, T
# separator
sep_output = checkpoint_sequential(self.separator_mask, 2, subband_feature_mask.view(batch_size, nch, self.nband*self.feature_dim, -1)) # B, nband*N, T
sep_output = sep_output.view(batch_size*nch, self.nband, self.feature_dim, -1)
combined = torch.cat((subband_feature_map,sep_output), dim=2)
combined1 = combined.reshape(batch_size * nch * self.nband,self.feature_dim*2,-1)
combined2 = self.Tanh(self.in_conv(combined1))
combined3 = combined2.reshape(batch_size * nch, self.nband,self.feature_dim,-1)
sep_output2 = checkpoint_sequential(self.separator_map, 2, combined3.view(batch_size, nch, self.nband*self.feature_dim, -1)) # 1B, nband*N, T
sep_output2 = sep_output2.view(batch_size * nch, self.nband, self.feature_dim, -1)
sep_subband_spec = []
sep_subband_spec_mask = []
for i in range(self.nband):
this_output = self.mask[i](sep_output[:,i]).view(batch_size*nch, 2, 2, self.num_output, self.band_width[i], -1)
this_mask = this_output[:,0] * torch.sigmoid(this_output[:,1]) # B*nch, 2, K, BW, T
this_mask_real = this_mask[:,0] # B*nch, K, BW, T
this_mask_imag = this_mask[:,1] # B*nch, K, BW, T
# force mask sum to 1
this_mask_real_sum = this_mask_real.sum(1).unsqueeze(1) # B*nch, 1, BW, T
this_mask_imag_sum = this_mask_imag.sum(1).unsqueeze(1) # B*nch, 1, BW, T
this_mask_real = this_mask_real - (this_mask_real_sum - 1) / self.num_output
this_mask_imag = this_mask_imag - this_mask_imag_sum / self.num_output
est_spec_real = subband_spec[i].real.unsqueeze(1) * this_mask_real - subband_spec[i].imag.unsqueeze(1) * this_mask_imag # B*nch, K, BW, T
est_spec_imag = subband_spec[i].real.unsqueeze(1) * this_mask_imag + subband_spec[i].imag.unsqueeze(1) * this_mask_real # B*nch, K, BW, T
##################################
this_output2 = self.map[i](sep_output2[:,i]).view(batch_size*nch, 2, 2, self.num_output, self.band_width[i], -1)
this_map = this_output2[:,0] * torch.sigmoid(this_output2[:,1]) # B*nch, 2, K, BW, T
this_map_real = this_map[:,0] # B*nch, K, BW, T
this_map_imag = this_map[:,1] # B*nch, K, BW, T
est_spec_real2 = est_spec_real+this_map_real
est_spec_imag2 = est_spec_imag+this_map_imag
sep_subband_spec.append(torch.complex(est_spec_real2, est_spec_imag2))
sep_subband_spec_mask.append(torch.complex(est_spec_real, est_spec_imag))
sep_subband_spec = torch.cat(sep_subband_spec, 2)
est_spec_mask = torch.cat(sep_subband_spec_mask, 2)
output = torch.istft(sep_subband_spec.view(batch_size*nch*self.num_output, self.enc_dim, -1),
n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device).type(input.type()), length=nsample)
output_mask = torch.istft(est_spec_mask.view(batch_size*nch*self.num_output, self.enc_dim, -1),
n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device).type(input.type()), length=nsample)
output = output.view(batch_size, nch, self.num_output, -1).transpose(1,2).contiguous()
output_mask = output_mask.view(batch_size, nch, self.num_output, -1).transpose(1,2).contiguous()
# return output, output_mask
return output
if __name__ == '__main__':
model = Separator().cuda()
arr = np.zeros((1, 2, 3*44100), dtype=np.float32)
x = torch.from_numpy(arr).cuda()
res = model(x)