|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
from utils import prefer_target_instrument |
|
|
|
|
|
class ShortTimeHartleyTransform: |
|
def __init__(self, *, n_fft: int, hop_length: int, center: bool = True, |
|
pad_mode: str = "reflect") -> None: |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.center = center |
|
self.pad_mode = pad_mode |
|
self.window = torch.hamming_window(self.n_fft) |
|
|
|
@staticmethod |
|
def _hartley_transform(x: torch.Tensor) -> torch.Tensor: |
|
fft = torch.fft.fft(x) |
|
return fft.real - fft.imag |
|
|
|
@staticmethod |
|
def _inverse_hartley_transform(X: torch.Tensor) -> torch.Tensor: |
|
N = X.size(-1) |
|
return ShortTimeHartleyTransform._hartley_transform(X) / N |
|
|
|
def transform(self, *, signal: torch.Tensor) -> torch.Tensor: |
|
assert signal.dim() == 3, "Signal must be a 3D tensor (batch_size, channel, samples)" |
|
self.window = self.window.to(signal.device) |
|
batch_size, channels, samples = signal.shape |
|
|
|
|
|
if self.center: |
|
pad_length = self.n_fft // 2 |
|
signal = F.pad(signal, (pad_length, pad_length), mode=self.pad_mode) |
|
else: |
|
pad_length = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_frames = (signal.size(2) - self.n_fft) // self.hop_length + 1 |
|
|
|
|
|
window = self.window.to(signal.device, signal.dtype).unsqueeze(0).unsqueeze(0) |
|
stht_coeffs = [] |
|
|
|
for i in range(num_frames): |
|
start = i * self.hop_length |
|
end = start + self.n_fft |
|
frame = signal[:, :, start:end] * window |
|
stht_coeffs.append(self._hartley_transform(frame)) |
|
|
|
return torch.stack(stht_coeffs, dim=-1) |
|
|
|
def inverse_transform(self, *, stht_coeffs: torch.Tensor, length: int) -> torch.Tensor: |
|
self.window = self.window.to(stht_coeffs.device) |
|
|
|
batch_size, channels, n_fft, num_frames = stht_coeffs.shape |
|
signal_length = length |
|
|
|
|
|
reconstructed_signal = torch.zeros((batch_size, channels, signal_length + (self.n_fft if self.center else 0)), |
|
device=stht_coeffs.device, dtype=stht_coeffs.dtype) |
|
normalization = torch.zeros(signal_length + (self.n_fft if self.center else 0), |
|
device=stht_coeffs.device, dtype=stht_coeffs.dtype) |
|
|
|
window = self.window.to(stht_coeffs.device, stht_coeffs.dtype).unsqueeze(0).unsqueeze(0) |
|
|
|
for i in range(num_frames): |
|
start = i * self.hop_length |
|
end = start + self.n_fft |
|
|
|
|
|
frame = self._inverse_hartley_transform(stht_coeffs[:, :, :, i]) * window |
|
reconstructed_signal[:, :, start:end] += frame |
|
normalization[start:end] += (window ** 2).squeeze() |
|
|
|
|
|
eps = torch.finfo(normalization.dtype).eps |
|
normalization = torch.clamp(normalization, min=eps) |
|
reconstructed_signal /= normalization.unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
if self.center: |
|
pad_length = self.n_fft // 2 |
|
reconstructed_signal = reconstructed_signal[:, :, pad_length:-pad_length] |
|
|
|
|
|
return reconstructed_signal[:, :, :signal_length] |
|
|
|
|
|
def get_norm(norm_type): |
|
def norm(c, norm_type): |
|
if norm_type == 'BatchNorm': |
|
return nn.BatchNorm2d(c) |
|
elif norm_type == 'InstanceNorm': |
|
return nn.InstanceNorm2d(c, affine=True) |
|
elif 'GroupNorm' in norm_type: |
|
g = int(norm_type.replace('GroupNorm', '')) |
|
return nn.GroupNorm(num_groups=g, num_channels=c) |
|
else: |
|
return nn.Identity() |
|
|
|
return partial(norm, norm_type=norm_type) |
|
|
|
|
|
def get_act(act_type): |
|
if act_type == 'gelu': |
|
return nn.GELU() |
|
elif act_type == 'relu': |
|
return nn.ReLU() |
|
elif act_type[:3] == 'elu': |
|
alpha = float(act_type.replace('elu', '')) |
|
return nn.ELU(alpha) |
|
else: |
|
raise Exception |
|
|
|
|
|
class Upscale(nn.Module): |
|
def __init__(self, in_c, out_c, scale, norm, act): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
norm(in_c), |
|
act, |
|
nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class Downscale(nn.Module): |
|
def __init__(self, in_c, out_c, scale, norm, act): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
norm(in_c), |
|
act, |
|
nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class TFC_TDF(nn.Module): |
|
def __init__(self, in_c, c, l, f, bn, norm, act): |
|
super().__init__() |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(l): |
|
block = nn.Module() |
|
|
|
block.tfc1 = nn.Sequential( |
|
norm(in_c), |
|
act, |
|
nn.Conv2d(in_c, c, 3, 1, 1, bias=False), |
|
) |
|
block.tdf = nn.Sequential( |
|
norm(c), |
|
act, |
|
nn.Linear(f, f // bn, bias=False), |
|
norm(c), |
|
act, |
|
nn.Linear(f // bn, f, bias=False), |
|
) |
|
block.tfc2 = nn.Sequential( |
|
norm(c), |
|
act, |
|
nn.Conv2d(c, c, 3, 1, 1, bias=False), |
|
) |
|
block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False) |
|
|
|
self.blocks.append(block) |
|
in_c = c |
|
|
|
def forward(self, x): |
|
for block in self.blocks: |
|
s = block.shortcut(x) |
|
x = block.tfc1(x) |
|
x = x + block.tdf(x) |
|
x = block.tfc2(x) |
|
x = x + s |
|
return x |
|
|
|
|
|
class TFC_TDF_net(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
norm = get_norm(norm_type=config.model.norm) |
|
act = get_act(act_type=config.model.act) |
|
|
|
self.num_target_instruments = len(prefer_target_instrument(config)) |
|
self.num_subbands = config.model.num_subbands |
|
|
|
|
|
dim_c = self.num_subbands * config.audio.num_channels |
|
n = config.model.num_scales |
|
scale = config.model.scale |
|
l = config.model.num_blocks_per_scale |
|
c = config.model.num_channels |
|
g = config.model.growth |
|
bn = config.model.bottleneck_factor |
|
f = config.audio.dim_f // (self.num_subbands // 2) |
|
|
|
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False) |
|
|
|
self.encoder_blocks = nn.ModuleList() |
|
for i in range(n): |
|
block = nn.Module() |
|
block.tfc_tdf = TFC_TDF(c, c, l, f, bn, norm, act) |
|
block.downscale = Downscale(c, c + g, scale, norm, act) |
|
f = f // scale[1] |
|
c += g |
|
self.encoder_blocks.append(block) |
|
|
|
self.bottleneck_block = TFC_TDF(c, c, l, f, bn, norm, act) |
|
|
|
self.decoder_blocks = nn.ModuleList() |
|
for i in range(n): |
|
block = nn.Module() |
|
block.upscale = Upscale(c, c - g, scale, norm, act) |
|
f = f * scale[1] |
|
c -= g |
|
block.tfc_tdf = TFC_TDF(2 * c, c, l, f, bn, norm, act) |
|
self.decoder_blocks.append(block) |
|
|
|
self.final_conv = nn.Sequential( |
|
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False), |
|
act, |
|
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False) |
|
) |
|
|
|
self.stft = ShortTimeHartleyTransform(n_fft=config.audio.n_fft, hop_length=config.audio.hop_length) |
|
|
|
def cac2cws(self, x): |
|
k = self.num_subbands |
|
b, c, f, t = x.shape |
|
x = x.reshape(b, c, k, f // k, t) |
|
x = x.reshape(b, c * k, f // k, t) |
|
return x |
|
|
|
def cws2cac(self, x): |
|
k = self.num_subbands |
|
b, c, f, t = x.shape |
|
x = x.reshape(b, c // k, k, f, t) |
|
x = x.reshape(b, c // k, f * k, t) |
|
return x |
|
|
|
def forward(self, x): |
|
length = x.shape[-1] |
|
|
|
x = self.stft.transform(signal=x) |
|
|
|
|
|
mix = x = self.cac2cws(x) |
|
|
|
|
|
|
|
first_conv_out = x = self.first_conv(x) |
|
|
|
|
|
|
|
x = x.transpose(-1, -2) |
|
|
|
|
|
|
|
encoder_outputs = [] |
|
for block in self.encoder_blocks: |
|
|
|
x = block.tfc_tdf(x) |
|
|
|
encoder_outputs.append(x) |
|
x = block.downscale(x) |
|
|
|
|
|
x = self.bottleneck_block(x) |
|
|
|
|
|
for block in self.decoder_blocks: |
|
|
|
x = block.upscale(x) |
|
|
|
x = torch.cat([x, encoder_outputs.pop()], 1) |
|
|
|
x = block.tfc_tdf(x) |
|
|
|
|
|
x = x.transpose(-1, -2) |
|
|
|
|
|
x = x * first_conv_out |
|
|
|
|
|
|
|
x = self.final_conv(torch.cat([mix, x], 1)) |
|
|
|
x = self.cws2cac(x) |
|
|
|
if self.num_target_instruments > 1: |
|
b, c, f, t = x.shape |
|
x = x.reshape(b * self.num_target_instruments, -1, f, t) |
|
x = self.stft.inverse_transform(stht_coeffs=x, length=length) |
|
x = x.reshape(b, self.num_target_instruments, x.shape[-2], x.shape[-1]) |
|
else: |
|
x = self.stft.inverse_transform(stht_coeffs=x, length=length) |
|
|
|
return x |
|
|