|
from functools import wraps |
|
from packaging import version |
|
from collections import namedtuple |
|
|
|
import os |
|
import torch |
|
from torch import nn, einsum |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, reduce |
|
|
|
|
|
|
|
FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(v, d): |
|
return v if exists(v) else d |
|
|
|
def once(fn): |
|
called = False |
|
@wraps(fn) |
|
def inner(x): |
|
nonlocal called |
|
if called: |
|
return |
|
called = True |
|
return fn(x) |
|
return inner |
|
|
|
print_once = once(print) |
|
|
|
|
|
|
|
class Attend(nn.Module): |
|
def __init__( |
|
self, |
|
dropout = 0., |
|
flash = False, |
|
scale = None |
|
): |
|
super().__init__() |
|
self.scale = scale |
|
self.dropout = dropout |
|
self.attn_dropout = nn.Dropout(dropout) |
|
|
|
self.flash = flash |
|
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' |
|
|
|
|
|
|
|
self.cpu_config = FlashAttentionConfig(True, True, True) |
|
self.cuda_config = None |
|
|
|
if not torch.cuda.is_available() or not flash: |
|
return |
|
|
|
device_properties = torch.cuda.get_device_properties(torch.device('cuda')) |
|
device_version = version.parse(f'{device_properties.major}.{device_properties.minor}') |
|
|
|
if device_version >= version.parse('8.0'): |
|
if os.name == 'nt': |
|
print_once('Windows OS detected, using math or mem efficient attention if input tensor is on cuda') |
|
self.cuda_config = FlashAttentionConfig(False, True, True) |
|
else: |
|
print_once('GPU Compute Capability equal or above 8.0, using flash attention if input tensor is on cuda') |
|
self.cuda_config = FlashAttentionConfig(True, False, False) |
|
else: |
|
print_once('GPU Compute Capability below 8.0, using math or mem efficient attention if input tensor is on cuda') |
|
self.cuda_config = FlashAttentionConfig(False, True, True) |
|
|
|
def flash_attn(self, q, k, v): |
|
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device |
|
|
|
if exists(self.scale): |
|
default_scale = q.shape[-1] ** -0.5 |
|
q = q * (self.scale / default_scale) |
|
|
|
|
|
|
|
config = self.cuda_config if is_cuda else self.cpu_config |
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(**config._asdict()): |
|
out = F.scaled_dot_product_attention( |
|
q, k, v, |
|
dropout_p = self.dropout if self.training else 0. |
|
) |
|
|
|
return out |
|
|
|
def forward(self, q, k, v): |
|
""" |
|
einstein notation |
|
b - batch |
|
h - heads |
|
n, i, j - sequence length (base sequence length, source, target) |
|
d - feature dimension |
|
""" |
|
|
|
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device |
|
|
|
scale = default(self.scale, q.shape[-1] ** -0.5) |
|
|
|
if self.flash: |
|
return self.flash_attn(q, k, v) |
|
|
|
|
|
|
|
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale |
|
|
|
|
|
|
|
attn = sim.softmax(dim=-1) |
|
attn = self.attn_dropout(attn) |
|
|
|
|
|
|
|
out = einsum(f"b h i j, b h j d -> b h i d", attn, v) |
|
|
|
return out |
|
|