File size: 15,678 Bytes
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
 
 
 
c3eda24
 
610ed41
 
 
 
 
 
 
 
 
 
 
 
c3eda24
 
 
 
610ed41
 
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
c3eda24
 
610ed41
 
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
c3eda24
 
 
 
 
 
 
 
 
 
 
610ed41
 
c3eda24
 
610ed41
c3eda24
 
610ed41
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
c3eda24
 
 
 
 
 
610ed41
 
 
 
 
 
 
 
 
 
c3eda24
 
 
 
 
610ed41
 
c3eda24
610ed41
 
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
 
 
 
 
 
c3eda24
 
 
 
610ed41
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
 
 
 
 
 
 
 
 
 
c3eda24
 
 
 
 
610ed41
c3eda24
 
 
 
 
 
 
 
 
 
 
610ed41
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ed41
 
 
 
 
 
 
 
 
c3eda24
 
 
610ed41
c3eda24
 
 
 
 
610ed41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
import glob
import subprocess
import time
import gc
import shutil
import sys
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)

from datetime import datetime
from helpers import INPUT_DIR, OLD_OUTPUT_DIR, ENSEMBLE_DIR, AUTO_ENSEMBLE_TEMP, move_old_files, clear_directory, BASE_DIR
from model import get_model_config
import torch
import yaml
import gradio as gr
import threading
import random
import librosa
import soundfile as sf
import numpy as np
import requests
import json
import locale
import re
import psutil
import concurrent.futures
from tqdm import tqdm
from google.oauth2.credentials import Credentials
import tempfile
from urllib.parse import urlparse, quote
from clean_model import clean_model_name, shorten_filename, clean_filename

import warnings
warnings.filterwarnings("ignore")

# BASE_DIR'i dinamik olarak güncel dizine ayarla
BASE_DIR = os.path.dirname(os.path.abspath(__file__))  # processing.py'nin bulunduğu dizin
INFERENCE_PATH = os.path.join(BASE_DIR, "inference.py")  # inference.py'nin tam yolu
OUTPUT_DIR = os.path.join(BASE_DIR, "output")  # Çıkış dizini BASE_DIR/output olarak güncellendi
AUTO_ENSEMBLE_OUTPUT = os.path.join(BASE_DIR, "ensemble_output")  # Ensemble çıkış dizini

def extract_model_name(full_model_string):
    """Extracts the clean model name from a string."""
    if not full_model_string:
        return ""
    cleaned = str(full_model_string)
    if ' - ' in cleaned:
        cleaned = cleaned.split(' - ')[0]
    emoji_prefixes = ['✅ ', '👥 ', '🗣️ ', '🏛️ ', '🔇 ', '🔉 ', '🎬 ', '🎼 ', '✅(?) ']
    for prefix in emoji_prefixes:
        if cleaned.startswith(prefix):
            cleaned = cleaned[len(prefix):]
    return cleaned.strip()

def run_command_and_process_files(model_type, config_path, start_check_point, INPUT_DIR, OUTPUT_DIR, extract_instrumental, use_tta, demud_phaseremix_inst, clean_model, progress=gr.Progress()):
    try:
        # inference.py'nin tam yolunu kullan
        cmd_parts = [
            "python", INFERENCE_PATH,
            "--model_type", model_type,
            "--config_path", config_path,
            "--start_check_point", start_check_point,
            "--input_folder", INPUT_DIR,
            "--store_dir", OUTPUT_DIR,
        ]
        if extract_instrumental:
            cmd_parts.append("--extract_instrumental")
        if use_tta:
            cmd_parts.append("--use_tta")
        if demud_phaseremix_inst:
            cmd_parts.append("--demud_phaseremix_inst")

        process = subprocess.Popen(
            cmd_parts,
            cwd=BASE_DIR,  # Çalışma dizini olarak BASE_DIR kullan
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
            bufsize=1,
            universal_newlines=True
        )

        # Progress bar ile subprocess çıktısını izleme
        progress(0, desc="Starting audio separation...", total=100)
        progress_bar = tqdm(total=100, desc="Processing audio", unit="%", position=0, leave=False)

        for line in process.stdout:
            print(line.strip())
            # İlerleme yüzdesini parse et (ondalık olarak)
            if "Progress:" in line:
                try:
                    percentage = float(re.search(r"Progress: (\d+\.\d+)%", line).group(1))
                    progress(percentage, desc=f"Separating audio... ({percentage:.1f}%)")
                    progress_bar.n = percentage  # tqdm'i güncelle
                    progress_bar.refresh()
                except (AttributeError, ValueError) as e:
                    print(f"Progress parsing error: {e}")
            elif "Processing file" in line:
                progress(0, desc=line.strip())  # Yeni dosya işleniyorsa sıfırla

        for line in process.stderr:
            print(line.strip())

        process.wait()
        progress_bar.close()
        progress(100, desc="Separation complete!")

        filename_model = clean_model_name(clean_model)

        def rename_files_with_model(folder, filename_model):
            for filename in sorted(os.listdir(folder)):
                file_path = os.path.join(folder, filename)
                if not any(filename.lower().endswith(ext) for ext in ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a']):
                    continue
                base, ext = os.path.splitext(filename)
                clean_base = base.strip('_- ')
                new_filename = f"{clean_base}_{filename_model}{ext}"
                new_file_path = os.path.join(folder, new_filename)
                os.rename(file_path, new_file_path)

        rename_files_with_model(OUTPUT_DIR, filename_model)

        output_files = os.listdir(OUTPUT_DIR)

        def find_file(keyword):
            matching_files = [
                os.path.join(OUTPUT_DIR, f) for f in output_files 
                if keyword in f.lower()
            ]
            return matching_files[0] if matching_files else None

        vocal_file = find_file('vocals')
        instrumental_file = find_file('instrumental')
        phaseremix_file = find_file('phaseremix')
        drum_file = find_file('drum')
        bass_file = find_file('bass')
        other_file = find_file('other')
        effects_file = find_file('effects')
        speech_file = find_file('speech')
        music_file = find_file('music')
        dry_file = find_file('dry')
        male_file = find_file('male')
        female_file = find_file('female')
        bleed_file = find_file('bleed')
        karaoke_file = find_file('karaoke')

        return (
            vocal_file or None,
            instrumental_file or None,
            phaseremix_file or None,
            drum_file or None,
            bass_file or None,
            other_file or None,
            effects_file or None,
            speech_file or None,
            music_file or None,
            dry_file or None,
            male_file or None,
            female_file or None,
            bleed_file or None,
            karaoke_file or None
        )

    except Exception as e:
        print(f"An error occurred: {e}")
        return (None,) * 14

    finally:
        clear_directory(INPUT_DIR)

def process_audio(input_audio_file, model, chunk_size, overlap, export_format, use_tta, demud_phaseremix_inst, extract_instrumental, clean_model, progress=gr.Progress(track_tqdm=True), *args, **kwargs):
    """Processes audio using the specified model and returns separated stems with progress."""
    if input_audio_file is not None:
        audio_path = input_audio_file.name
    else:
        existing_files = os.listdir(INPUT_DIR)
        if existing_files:
            audio_path = os.path.join(INPUT_DIR, existing_files[0])
        else:
            print("No audio file provided and no existing file in input directory.")
            return [None] * 14

    os.makedirs(OUTPUT_DIR, exist_ok=True)
    os.makedirs(OLD_OUTPUT_DIR, exist_ok=True)
    move_old_files(OUTPUT_DIR)

    clean_model_name_full = extract_model_name(model)
    print(f"Processing audio from: {audio_path} using model: {clean_model_name_full}")

    progress(0, desc="Starting audio separation...", total=100)
    model_type, config_path, start_check_point = get_model_config(clean_model_name_full, chunk_size, overlap)

    outputs = run_command_and_process_files(
        model_type=model_type,
        config_path=config_path,
        start_check_point=start_check_point,
        INPUT_DIR=INPUT_DIR,
        OUTPUT_DIR=OUTPUT_DIR,
        extract_instrumental=extract_instrumental,
        use_tta=use_tta,
        demud_phaseremix_inst=demud_phaseremix_inst,
        clean_model=clean_model_name_full,
        progress=progress
    )

    progress(100, desc="Audio processing completed!")
    return outputs

def ensemble_audio_fn(files, method, weights, progress=gr.Progress()):
    try:
        if len(files) < 2:
            return None, "⚠️ Minimum 2 files required"
        
        valid_files = [f for f in files if os.path.exists(f)]
        if len(valid_files) < 2:
            return None, "❌ Valid files not found"
        
        output_dir = os.path.join(BASE_DIR, "ensembles")  # BASE_DIR üzerinden dinamik
        os.makedirs(output_dir, exist_ok=True)
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        output_path = f"{output_dir}/ensemble_{timestamp}.wav"
        
        ensemble_args = [
            "--files", *valid_files,
            "--type", method.lower().replace(' ', '_'),
            "--output", output_path
        ]
        
        if weights and weights.strip():
            weights_list = [str(w) for w in map(float, weights.split(','))]
            ensemble_args += ["--weights", *weights_list]
        
        progress(0, desc="Starting ensemble process...", total=100)
        result = subprocess.run(
            ["python", "ensemble.py"] + ensemble_args,
            capture_output=True,
            text=True
        )
        
        # Ensemble için gerçek süreye dayalı ilerleme (0.1'lik adımlarla)
        start_time = time.time()
        total_estimated_time = 10.0  # Tahmini toplam süre (saniye, gerçek süreye göre ayarlanabilir)
        for i in np.arange(0.1, 100.1, 0.1):
            elapsed_time = time.time() - start_time
            progress_value = min(i, (elapsed_time / total_estimated_time) * 100)
            time.sleep(0.001)  # Çok küçük bir gecikme, gerçek işlem süresiyle değiştirilebilir
            progress(progress_value, desc=f"Ensembling... ({progress_value:.1f}%)")
        
        progress(100, desc="Finalizing ensemble output...")
        log = f"✅ Success!\n{result.stdout}" if not result.stderr else f"❌ Error!\n{result.stderr}"
        return output_path, log

    except Exception as e:
        return None, f"⛔ Critical Error: {str(e)}"
    finally:
        progress(100, desc="Ensemble process completed!")

def auto_ensemble_process(input_audio_file, selected_models, chunk_size, overlap, export_format, use_tta, extract_instrumental, ensemble_type, _state, progress=gr.Progress(track_tqdm=True), *args, **kwargs):
    """Processes audio with multiple models and performs ensemble with progress."""
    try:
        if not selected_models or len(selected_models) < 1:
            return None, "❌ No models selected"

        if input_audio_file is None:
            existing_files = os.listdir(INPUT_DIR)
            if not existing_files:
                return None, "❌ No input audio provided"
            audio_path = os.path.join(INPUT_DIR, existing_files[0])
        else:
            audio_path = input_audio_file.name

        auto_ensemble_temp = os.path.join(BASE_DIR, "auto_ensemble_temp")
        os.makedirs(auto_ensemble_temp, exist_ok=True)
        os.makedirs(AUTO_ENSEMBLE_OUTPUT, exist_ok=True)
        clear_directory(auto_ensemble_temp)

        all_outputs = []
        total_models = len(selected_models)
        total_steps = int(total_models * 10 + 20)  # Her model için 10 adım + final adımlar, ondalık için tam sayı

        progress(0, desc="Starting ensemble process...", total=total_steps)

        for i, model in enumerate(selected_models):
            clean_model = extract_model_name(model)
            model_output_dir = os.path.join(auto_ensemble_temp, clean_model)
            os.makedirs(model_output_dir, exist_ok=True)

            progress(i * 10, desc=f"Loading model {i+1}/{total_models}: {model}...")
            model_type, config_path, start_check_point = get_model_config(clean_model, chunk_size, overlap)

            cmd = [
                "python", INFERENCE_PATH,
                "--model_type", model_type,
                "--config_path", config_path,
                "--start_check_point", start_check_point,
                "--input_folder", INPUT_DIR,
                "--store_dir", model_output_dir,
            ]
            if use_tta:
                cmd.append("--use_tta")
            if extract_instrumental:
                cmd.append("--extract_instrumental")

            print(f"Running command: {' '.join(cmd)}")
            try:
                result = subprocess.run(cmd, capture_output=True, text=True)
                print(result.stdout)
                if result.returncode != 0:
                    print(f"Error: {result.stderr}")
                    return None, f"Model {model} failed: {result.stderr}"
            except Exception as e:
                return None, f"Critical error with {model}: {str(e)}"

            # Her model için gerçek süreye dayalı ilerleme (0.1'lik adımlarla)
            start_time = time.time()
            total_estimated_time = 1.0  # Tahmini toplam süre (saniye, gerçek süreye göre ayarlanabilir)
            for j in np.arange(0.1, 10.1, 0.1):
                elapsed_time = time.time() - start_time
                progress_value = (i * 10) + j
                progress_value = min(progress_value, (i * 10) + (elapsed_time / total_estimated_time) * 10)
                time.sleep(0.001)  # Çok küçük bir gecikme, gerçek işlem süresiyle değiştirilebilir
                progress(progress_value, desc=f"Separating with {model} ({progress_value:.1f}%)")

            model_outputs = glob.glob(os.path.join(model_output_dir, "*.wav"))
            if not model_outputs:
                raise FileNotFoundError(f"{model} failed to produce output")
            all_outputs.extend(model_outputs)

        progress(total_models * 10 + 5, desc="Waiting for all files to be ready...")
        def wait_for_files(files, timeout=300):
            start = time.time()
            while time.time() - start < timeout:
                missing = [f for f in files if not os.path.exists(f)]
                if not missing:
                    return True
                time.sleep(5)
            raise TimeoutError(f"Missing files: {missing[:3]}...")

        wait_for_files(all_outputs)

        progress(total_models * 10 + 10, desc="Performing ensemble...")
        quoted_files = [f'"{f}"' for f in all_outputs]
        timestamp = str(int(time.time()))
        output_path = os.path.join(AUTO_ENSEMBLE_OUTPUT, f"ensemble_{timestamp}.wav")
        
        ensemble_cmd = [
            "python", "ensemble.py",
            "--files", *quoted_files,
            "--type", ensemble_type,
            "--output", f'"{output_path}"'
        ]

        result = subprocess.run(
            " ".join(ensemble_cmd),
            shell=True,
            capture_output=True,
            text=True,
            check=True
        )

        # Ensemble için gerçek süreye dayalı ilerleme (0.1'lik adımlarla)
        start_time = time.time()
        total_estimated_time = 10.0  # Tahmini toplam süre (saniye, gerçek süreye göre ayarlanabilir)
        for i in np.arange(total_models * 10 + 11, total_steps - 0.1, 0.1):
            elapsed_time = time.time() - start_time
            progress_value = min(i, (elapsed_time / total_estimated_time) * (total_steps - (total_models * 10 + 10)) + (total_models * 10 + 10))
            time.sleep(0.001)  # Çok küçük bir gecikme, gerçek işlem süresiyle değiştirilebilir
            progress(progress_value, desc=f"Ensembling... ({progress_value:.1f}%)")

        if not os.path.exists(output_path):
            raise RuntimeError("Ensemble dosyası oluşturulamadı")
        
        progress(total_steps, desc="Ensemble completed successfully!")
        return output_path, "✅ Success!"
    except Exception as e:
        return None, f"❌ Error: {str(e)}"
    finally:
        shutil.rmtree(auto_ensemble_temp, ignore_errors=True)
        gc.collect()