File size: 11,636 Bytes
3978e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# https://github.com/Human9000/nd-Mamba2-torch
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from abc import abstractmethod
def silu(x):
return x * F.sigmoid(x)
class RMSNorm(nn.Module):
def __init__(self, d: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d))
def forward(self, x, z):
x = x * silu(z)
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
class Mamba2(nn.Module):
def __init__(self, d_model: int, # model dimension (D)
n_layer: int = 24, # number of Mamba-2 layers in the language model
d_state: int = 128, # state dimension (N)
d_conv: int = 4, # convolution kernel size
expand: int = 2, # expansion factor (E)
headdim: int = 64, # head dimension (P)
chunk_size: int = 64, # matrix partition size (Q)
):
super().__init__()
self.n_layer = n_layer
self.d_state = d_state
self.headdim = headdim
# self.chunk_size = torch.tensor(chunk_size, dtype=torch.int32)
self.chunk_size = chunk_size
self.d_inner = expand * d_model
assert self.d_inner % self.headdim == 0, "self.d_inner must be divisible by self.headdim"
self.nheads = self.d_inner // self.headdim
d_in_proj = 2 * self.d_inner + 2 * self.d_state + self.nheads
self.in_proj = nn.Linear(d_model, d_in_proj, bias=False)
conv_dim = self.d_inner + 2 * d_state
self.conv1d = nn.Conv1d(conv_dim, conv_dim, d_conv, groups=conv_dim, padding=d_conv - 1, )
self.dt_bias = nn.Parameter(torch.empty(self.nheads, ))
self.A_log = nn.Parameter(torch.empty(self.nheads, ))
self.D = nn.Parameter(torch.empty(self.nheads, ))
self.norm = RMSNorm(self.d_inner, )
self.out_proj = nn.Linear(self.d_inner, d_model, bias=False, )
def forward(self, u: Tensor):
A = -torch.exp(self.A_log) # (nheads,)
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
z, xBC, dt = torch.split(
zxbcdt,
[
self.d_inner,
self.d_inner + 2 * self.d_state,
self.nheads,
],
dim=-1,
)
dt = F.softplus(dt + self.dt_bias) # (batch, seqlen, nheads)
# Pad or truncate xBC seqlen to d_conv
xBC = silu(
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, : u.shape[1], :]
) # (batch, seqlen, d_inner + 2 * d_state))
x, B, C = torch.split(
xBC, [self.d_inner, self.d_state, self.d_state], dim=-1
)
_b, _l, _hp = x.shape
_h = _hp // self.headdim
_p = self.headdim
x = x.reshape(_b, _l, _h, _p)
y = self.ssd(x * dt.unsqueeze(-1),
A * dt,
B.unsqueeze(2),
C.unsqueeze(2), )
y = y + x * self.D.unsqueeze(-1)
_b, _l, _h, _p = y.shape
y = y.reshape(_b, _l, _h * _p)
y = self.norm(y, z)
y = self.out_proj(y)
return y
def segsum(self, x: Tensor) -> Tensor:
T = x.size(-1)
device = x.device
x = x[..., None].repeat(1, 1, 1, 1, T)
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=-1)
x = x.masked_fill(~mask, 0)
x_segsum = torch.cumsum(x, dim=-2)
mask = torch.tril(torch.ones(T, T, dtype=torch.bool, device=device), diagonal=0)
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
return x_segsum
def ssd(self, x, A, B, C):
chunk_size = self.chunk_size
# if x.shape[1] % chunk_size == 0:
#
x = x.reshape(x.shape[0], x.shape[1] // chunk_size, chunk_size, x.shape[2], x.shape[3], )
B = B.reshape(B.shape[0], B.shape[1] // chunk_size, chunk_size, B.shape[2], B.shape[3], )
C = C.reshape(C.shape[0], C.shape[1] // chunk_size, chunk_size, C.shape[2], C.shape[3], )
A = A.reshape(A.shape[0], A.shape[1] // chunk_size, chunk_size, A.shape[2])
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
L = torch.exp(self.segsum(A))
Y_diag = torch.einsum("bclhn, bcshn, bhcls, bcshp -> bclhp", C, B, L, x)
# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
states = torch.einsum("bclhn, bhcl, bclhp -> bchpn", B, decay_states, x)
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
initial_states = torch.zeros_like(states[:, :1])
states = torch.cat([initial_states, states], dim=1)
decay_chunk = torch.exp(self.segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0))))[0]
new_states = torch.einsum("bhzc, bchpn -> bzhpn", decay_chunk, states)
states = new_states[:, :-1]
# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
Y_off = torch.einsum("bclhn, bchpn, bhcl -> bclhp", C, states, state_decay_out)
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
# Y = rearrange(Y_diag + Y_off, "b c l h p -> b (c l) h p")
Y = Y_diag + Y_off
Y = Y.reshape(Y.shape[0], Y.shape[1] * Y.shape[2], Y.shape[3], Y.shape[4], )
return Y
class _BiMamba2(nn.Module):
def __init__(self,
cin: int,
cout: int,
d_model: int, # model dimension (D)
n_layer: int = 24, # number of Mamba-2 layers in the language model
d_state: int = 128, # state dimension (N)
d_conv: int = 4, # convolution kernel size
expand: int = 2, # expansion factor (E)
headdim: int = 64, # head dimension (P)
chunk_size: int = 64, # matrix partition size (Q)
):
super().__init__()
self.fc_in = nn.Linear(cin, d_model, bias=False) # 调整通道数到cmid
self.mamba2_for = Mamba2(d_model, n_layer, d_state, d_conv, expand, headdim, chunk_size, ) # 正向
self.mamba2_back = Mamba2(d_model, n_layer, d_state, d_conv, expand, headdim, chunk_size, ) # 负向
self.fc_out = nn.Linear(d_model, cout, bias=False) # 调整通道数到cout
self.chunk_size = chunk_size
@abstractmethod
def forward(self, x):
pass
class BiMamba2_1D(_BiMamba2):
def __init__(self, cin, cout, d_model, **mamba2_args):
super().__init__(cin, cout, d_model, **mamba2_args)
def forward(self, x):
l = x.shape[2]
x = F.pad(x, (0, (64 - x.shape[2] % 64) % 64)) # 将 l , pad到4的倍数, [b, c64,l4]
x = x.transpose(1, 2) # 转成 1d 信号 [b, c64, d4*w4*h4]
x = self.fc_in(x) # 调整通道数为目标通道数
x1 = self.mamba2_for(x)
x2 = self.mamba2_back(x.flip(1)).flip(1)
x = x1 + x2
x = self.fc_out(x) # 调整通道数为目标通道数
x = x.transpose(1, 2) # 转成 1d 信号 [b, c64, d4*w4*h4] ]
x = x[:, :, :l] # 截取原图大小
return x
class BiMamba2_2D(_BiMamba2):
def __init__(self, cin, cout, d_model, **mamba2_args):
super().__init__(cin, cout, d_model, **mamba2_args)
def forward(self, x):
h, w = x.shape[2:]
x = F.pad(x, (0, (8 - x.shape[3] % 8) % 8,
0, (8 - x.shape[2] % 8) % 8)
) # 将 h , w pad到8的倍数, [b, c64, h8, w8]
_b, _c, _h, _w = x.shape
x = x.permute(0, 2, 3, 1).reshape(_b, _h * _w, _c)
x = self.fc_in(x) # 调整通道数为目标通道数
x1 = self.mamba2_for(x)
x2 = self.mamba2_back(x.flip(1)).flip(1)
x = x1 + x2
x = self.fc_out(x) # 调整通道数为目标通道数
x = x.reshape(_b, _h, _w, -1, )
x = x.permute(0, 3, 1, 2)
x = x.reshape(_b, -1, _h, _w, )
x = x[:, :, :h, :w] # 截取原图大小
return x
class BiMamba2_3D(_BiMamba2):
def __init__(self, cin, cout, d_model, **mamba2_args):
super().__init__(cin, cout, d_model, **mamba2_args)
def forward(self, x):
d, h, w = x.shape[2:]
x = F.pad(x, (0, (4 - x.shape[4] % 4) % 4,
0, (4 - x.shape[3] % 4) % 4,
0, (4 - x.shape[2] % 4) % 4)
) # 将 d, h, w , pad到4的倍数, [b, c64,d4, h4, w4]
_b, _c, _d, _h, _w = x.shape
x = x.permute(0, 2, 3, 4, 1).reshape(_b, _d * _h * _w, _c)
x = self.fc_in(x) # 调整通道数为目标通道数
x1 = self.mamba2_for(x)
x2 = self.mamba2_back(x.flip(1)).flip(1)
x = x1 + x2
x = self.fc_out(x) # 调整通道数为目标通道数
x = x.reshape(_b, _d, _h, _w, -1)
x = x.permute(0, 4, 1, 2, 3)
x=x.reshape(_b, -1, _d, _h, _w, )
x = x[:, :, :d, :h, :w] # 截取原图大小
return x
class BiMamba2(_BiMamba2):
def __init__(self, cin, cout, d_model, **mamba2_args):
super().__init__(cin, cout, d_model, **mamba2_args)
def forward(self, x):
size = x.shape[2:]
out_size = list(x.shape)
out_size[1] = -1
x = torch.flatten(x, 2) # b c size
l = x.shape[2]
_s = self.chunk_size
x = F.pad(x, [0, (_s - x.shape[2] % _s) % _s]) # 将 l, pad到chunk_size的倍数, [b, c64,l4]
x = x.transpose(1, 2) # 转成 1d 信号
x = self.fc_in(x) # 调整通道数为目标通道数
x1 = self.mamba2_for(x)
x2 = self.mamba2_back(x.flip(1)).flip(1)
x = x1 + x2
x = self.fc_out(x) # 调整通道数为目标通道数
x = x.transpose(1, 2) # 转成 1d 信号
x = x[:, :, :l] # 截取原图大小
x = x.reshape(out_size)
return x
def test_export_jit_script(net, x):
y = net(x)
net_script = torch.jit.script(net)
torch.jit.save(net_script, 'net.jit.script')
net2 = torch.jit.load('net.jit.script')
y = net2(x)
print(y.shape)
def test_export_onnx(net, x):
torch.onnx.export(net,
x,
"net.onnx", # 输出的 ONNX 文件名
export_params=True, # 存储训练参数
opset_version=14, # 指定 ONNX 操作集版本
do_constant_folding=False, # 是否执行常量折叠优化
input_names=['input'], # 输入张量的名称
output_names=['output'], # 输出张量的名称
dynamic_axes={'input': {0: 'batch_size'}, # 可变维度的字典
'output': {0: 'batch_size'}})
if __name__ == '__main__':
# 通用的多维度双向mamba2
from torchnssd import (
export_jit_script,
export_onnx,
statistics,
test_run,
)
net_n = BiMamba2_1D(61, 128, 32).cuda()
net_n.eval()
x = torch.randn(1, 61, 63).cuda()
export_jit_script(net_n)
export_onnx(net_n, x)
test_run(net_n, x)
statistics(net_n, (61, 63))
|