File size: 9,608 Bytes
c3eda24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import torch.nn as nn
from datetime import datetime
import numpy as np
import librosa
# Using the embedded version of Python can also correctly import the utils module.
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix, get_model_from_config, normalize_audio, denormalize_audio
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights
import warnings
warnings.filterwarnings("ignore")
def shorten_filename(filename, max_length=30):
"""
Shortens a filename to a specified maximum length
Args:
filename (str): The filename to be shortened
max_length (int): Maximum allowed length for the filename
Returns:
str: Shortened filename
"""
base, ext = os.path.splitext(filename)
if len(base) <= max_length:
return filename
# Take first 15 and last 10 characters
shortened = base[:15] + "..." + base[-10:] + ext
return shortened
def get_soundfile_subtype(pcm_type, is_float=False):
"""
PCM türüne göre uygun soundfile subtypei belirle
Args:
pcm_type (str): PCM türü ('PCM_16', 'PCM_24', 'FLOAT')
is_float (bool): Float formatı kullanılıp kullanılmayacağı
Returns:
str: Soundfile subtype
"""
if is_float:
return 'FLOAT'
subtype_map = {
'PCM_16': 'PCM_16',
'PCM_24': 'PCM_24',
'FLOAT': 'FLOAT'
}
return subtype_map.get(pcm_type, 'FLOAT')
def run_folder(model, args, config, device, verbose: bool = False):
start_time = time.time()
model.eval()
mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*')))
sample_rate = getattr(config.audio, 'sample_rate', 44100)
print(f"Total files found: {len(mixture_paths)}. Using sample rate: {sample_rate}")
instruments = prefer_target_instrument(config)[:]
os.makedirs(args.store_dir, exist_ok=True)
# Dosya sayısını ve progress için değişkenler
total_files = len(mixture_paths)
current_file = 0
# Progress tracking
for path in mixture_paths:
try:
# Dosya işleme başlangıcı
current_file += 1
print(f"Processing file {current_file}/{total_files}")
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
except Exception as e:
print(f'Cannot read track: {path}')
print(f'Error message: {str(e)}')
continue
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mix, norm_params = normalize_audio(mix)
waveforms_orig = demix(config, model, mix, device, model_type=args.model_type)
if args.use_tta:
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)
if args.demud_phaseremix_inst:
print(f"Demudding track (phase remix - instrumental): {path}")
instr = 'vocals' if 'vocals' in instruments else instruments[0]
instruments.append('instrumental_phaseremix')
if 'instrumental' not in instruments and 'Instrumental' not in instruments:
mix_modified = mix_orig - 2*waveforms_orig[instr]
mix_modified_ = mix_modified.copy()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type)
if args.use_tta:
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_modified, device, args.model_type)
waveforms_orig['instrumental_phaseremix'] = mix_orig + waveforms_modified[instr]
else:
mix_modified = 2*waveforms_orig[instr] - mix_orig
mix_modified_ = mix_modified.copy()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type)
if args.use_tta:
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_orig, device, args.model_type)
waveforms_orig['instrumental_phaseremix'] = mix_orig + mix_modified_ - waveforms_modified[instr]
if args.extract_instrumental:
instr = 'vocals' if 'vocals' in instruments else instruments[0]
waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr]
if 'instrumental' not in instruments:
instruments.append('instrumental')
for instr in instruments:
estimates = waveforms_orig[instr]
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = denormalize_audio(estimates, norm_params)
# Dosya formatı ve PCM türü belirleme
is_float = getattr(args, 'export_format', '').startswith('wav FLOAT')
codec = 'flac' if getattr(args, 'flac_file', False) else 'wav'
# Subtype belirleme
if codec == 'flac':
subtype = get_soundfile_subtype(args.pcm_type, is_float)
else:
subtype = get_soundfile_subtype('FLOAT', is_float)
shortened_filename = shorten_filename(os.path.basename(path))
output_filename = f"{shortened_filename}_{instr}.{codec}"
output_path = os.path.join(args.store_dir, output_filename)
sf.write(output_path, estimates.T, sr, subtype=subtype)
# Progress yüzdesi hesaplama
progress_percent = int((current_file / total_files) * 100)
print(f"Progress: {progress_percent}%")
print(f"Elapsed time: {time.time() - start_time:.2f} seconds.")
def proc_folder(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c',
help="Model type (bandit, bs_roformer, mdx23c, etc.)")
parser.add_argument("--config_path", type=str, help="Path to config file")
parser.add_argument("--demud_phaseremix_inst", action='store_true', help="demud_phaseremix_inst")
parser.add_argument("--start_check_point", type=str, default='',
help="Initial checkpoint to valid weights")
parser.add_argument("--input_folder", type=str, help="Folder with mixtures to process")
parser.add_argument("--audio_path", type=str, help="Path to a single audio file to process") # Yeni argüman
parser.add_argument("--store_dir", default="", type=str, help="Path to store results")
parser.add_argument("--device_ids", nargs='+', type=int, default=0,
help='List of GPU IDs')
parser.add_argument("--extract_instrumental", action='store_true',
help="Invert vocals to get instrumental if provided")
parser.add_argument("--force_cpu", action='store_true',
help="Force the use of CPU even if CUDA is available")
parser.add_argument("--flac_file", action='store_true',
help="Output flac file instead of wav")
parser.add_argument("--export_format", type=str,
choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'],
default='flac PCM_24',
help="Export format and PCM type")
parser.add_argument("--pcm_type", type=str,
choices=['PCM_16', 'PCM_24'],
default='PCM_24',
help="PCM type for FLAC files")
parser.add_argument("--use_tta", action='store_true',
help="Enable test time augmentation")
parser.add_argument("--lora_checkpoint", type=str, default='',
help="Initial checkpoint to LoRA weights")
# Argümanları ayrıştır
parsed_args = parser.parse_args(args)
# Burada parsed_args.audio_path ile ses dosyası yolunu kullanabilirsiniz
print(f"Audio path provided: {parsed_args.audio_path}")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
# Cihaz seçimi
device = "cpu"
if args.force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print('CUDA is available, use --force_cpu to disable it.')
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
elif torch.backends.mps.is_available():
device = "mps"
print("Using device: ", device)
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
load_start_checkpoint(args, model, type_='inference')
print("Instruments: {}".format(config.training.instruments))
# Çoklu CUDA GPU kullanımı
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
model = nn.DataParallel(model, device_ids=args.device_ids)
model = model.to(device)
print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))
run_folder(model, args, config, device, verbose=True)
if __name__ == "__main__":
proc_folder(None)
|