File size: 24,548 Bytes
3978e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import os
import glob
import torch
import librosa
import numpy as np
import soundfile as sf
from tqdm.auto import tqdm
from ml_collections import ConfigDict
from typing import Tuple, Dict, List, Union
from utils import demix, get_model_from_config, prefer_target_instrument, draw_spectrogram
from utils import normalize_audio, denormalize_audio, apply_tta, read_audio_transposed, load_start_checkpoint
from metrics import get_metrics
import warnings
warnings.filterwarnings("ignore")
def logging(logs: List[str], text: str, verbose_logging: bool = False) -> None:
"""
Log validation information by printing the text and appending it to a log list.
Parameters:
----------
store_dir : str
Directory to store the logs. If empty, logs are not stored.
logs : List[str]
List where the logs will be appended if the store_dir is specified.
text : str
The text to be logged, printed, and optionally added to the logs list.
Returns:
-------
None
This function modifies the logs list in place and prints the text.
"""
print(text)
if verbose_logging:
logs.append(text)
def write_results_in_file(store_dir: str, logs: List[str]) -> None:
"""
Write the list of results into a file in the specified directory.
Parameters:
----------
store_dir : str
The directory where the results file will be saved.
results : List[str]
A list of result strings to be written to the file.
Returns:
-------
None
"""
with open(f'{store_dir}/results.txt', 'w') as out:
for item in logs:
out.write(item + "\n")
def get_mixture_paths(
args,
verbose: bool,
config: ConfigDict,
extension: str
) -> List[str]:
"""
Retrieve paths to mixture files in the specified validation directories.
Parameters:
----------
valid_path : List[str]
A list of directories to search for validation mixtures.
verbose : bool
If True, prints detailed information about the search process.
config : ConfigDict
Configuration object containing parameters like `inference.num_overlap` and `inference.batch_size`.
extension : str
File extension of the mixture files (e.g., 'wav').
Returns:
-------
List[str]
A list of file paths to the mixture files.
"""
try:
valid_path = args.valid_path
except Exception as e:
print('No valid path in args')
raise e
all_mixtures_path = []
for path in valid_path:
part = sorted(glob.glob(f"{path}/*/mixture.{extension}"))
if len(part) == 0:
if verbose:
print(f'No validation data found in: {path}')
all_mixtures_path += part
if verbose:
print(f'Total mixtures: {len(all_mixtures_path)}')
print(f'Overlap: {config.inference.num_overlap} Batch size: {config.inference.batch_size}')
return all_mixtures_path
def update_metrics_and_pbar(
track_metrics: Dict,
all_metrics: Dict,
instr: str,
pbar_dict: Dict,
mixture_paths: Union[List[str], tqdm],
verbose: bool = False
) -> None:
"""
Update metrics dictionary and progress bar with new metric values.
Parameters:
----------
track_metrics : Dict
Dictionary with metric names as keys and their computed values as values.
all_metrics : Dict
Dictionary to store all metrics, organized by metric name and instrument.
instr : str
Name of the instrument for which the metrics are being computed.
pbar_dict : Dict
Dictionary for progress bar updates.
mixture_paths : tqdm, optional
Progress bar object, if available. Default is None.
verbose : bool, optional
If True, prints metric values to the console. Default is False.
"""
for metric_name, metric_value in track_metrics.items():
if verbose:
print(f"Metric {metric_name:11s} value: {metric_value:.4f}")
all_metrics[metric_name][instr].append(metric_value)
pbar_dict[f'{metric_name}_{instr}'] = metric_value
if mixture_paths is not None:
try:
mixture_paths.set_postfix(pbar_dict)
except Exception:
pass
def process_audio_files(
mixture_paths: List[str],
model: torch.nn.Module,
args,
config,
device: torch.device,
verbose: bool = False,
is_tqdm: bool = True
) -> Dict[str, Dict[str, List[float]]]:
"""
Process a list of audio files, perform source separation, and evaluate metrics.
Parameters:
----------
mixture_paths : List[str]
List of file paths to the audio mixtures.
model : torch.nn.Module
The trained model used for source separation.
args : Any
Argument object containing user-specified options like metrics, model type, etc.
config : Any
Configuration object containing model and processing parameters.
device : torch.device
Device (CPU or CUDA) on which the model will be executed.
verbose : bool, optional
If True, prints detailed logs for each processed file. Default is False.
is_tqdm : bool, optional
If True, displays a progress bar for file processing. Default is True.
Returns:
-------
Dict[str, Dict[str, List[float]]]
A nested dictionary where the outer keys are metric names,
the inner keys are instrument names, and the values are lists of metric scores.
"""
instruments = prefer_target_instrument(config)
use_tta = getattr(args, 'use_tta', False)
# dir to save files, if empty no saving
store_dir = getattr(args, 'store_dir', '')
# codec to save files
if 'extension' in config['inference']:
extension = config['inference']['extension']
else:
extension = getattr(args, 'extension', 'wav')
# Initialize metrics dictionary
all_metrics = {
metric: {instr: [] for instr in config.training.instruments}
for metric in args.metrics
}
if is_tqdm:
mixture_paths = tqdm(mixture_paths)
for path in mixture_paths:
start_time = time.time()
mix, sr = read_audio_transposed(path)
mix_orig = mix.copy()
folder = os.path.dirname(path)
if 'sample_rate' in config.audio:
if sr != config.audio['sample_rate']:
orig_length = mix.shape[-1]
if verbose:
print(f'Warning: sample rate is different. In config: {config.audio["sample_rate"]} in file {path}: {sr}')
mix = librosa.resample(mix, orig_sr=sr, target_sr=config.audio['sample_rate'], res_type='kaiser_best')
if verbose:
folder_name = os.path.abspath(folder)
print(f'Song: {folder_name} Shape: {mix.shape}')
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mix, norm_params = normalize_audio(mix)
waveforms_orig = demix(config, model, mix.copy(), device, model_type=args.model_type)
if use_tta:
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)
pbar_dict = {}
for instr in instruments:
if verbose:
print(f"Instr: {instr}")
if instr != 'other' or config.training.other_fix is False:
track, sr1 = read_audio_transposed(f"{folder}/{instr}.{extension}", instr, skip_err=True)
if track is None:
continue
else:
# if track=vocal+other
track, sr1 = read_audio_transposed(f"{folder}/vocals.{extension}")
track = mix_orig - track
estimates = waveforms_orig[instr]
if 'sample_rate' in config.audio:
if sr != config.audio['sample_rate']:
estimates = librosa.resample(estimates, orig_sr=config.audio['sample_rate'], target_sr=sr,
res_type='kaiser_best')
estimates = librosa.util.fix_length(estimates, size=orig_length)
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = denormalize_audio(estimates, norm_params)
if store_dir:
os.makedirs(store_dir, exist_ok=True)
out_wav_name = f"{store_dir}/{os.path.basename(folder)}_{instr}.wav"
sf.write(out_wav_name, estimates.T, sr, subtype='FLOAT')
if args.draw_spectro > 0:
out_img_name = f"{store_dir}/{os.path.basename(folder)}_{instr}.jpg"
draw_spectrogram(estimates.T, sr, args.draw_spectro, out_img_name)
out_img_name_orig = f"{store_dir}/{os.path.basename(folder)}_{instr}_orig.jpg"
draw_spectrogram(track.T, sr, args.draw_spectro, out_img_name_orig)
track_metrics = get_metrics(
args.metrics,
track,
estimates,
mix_orig,
device=device,
)
update_metrics_and_pbar(
track_metrics,
all_metrics,
instr, pbar_dict,
mixture_paths=mixture_paths,
verbose=verbose
)
if verbose:
print(f"Time for song: {time.time() - start_time:.2f} sec")
return all_metrics
def compute_metric_avg(
store_dir: str,
args,
instruments: List[str],
config: ConfigDict,
all_metrics: Dict[str, Dict[str, List[float]]],
start_time: float
) -> Dict[str, float]:
"""
Calculate and log the average metrics for each instrument, including per-instrument metrics and overall averages.
Parameters:
----------
store_dir : str
Directory to store the logs. If empty, logs are not stored.
args : dict
Dictionary containing the arguments, used for logging.
instruments : List[str]
List of instruments to process.
config : ConfigDict
Configuration dictionary containing the inference settings.
all_metrics : Dict[str, Dict[str, List[float]]]
A dictionary containing metric values for each instrument.
The structure is {metric_name: {instrument_name: [metric_values]}}.
start_time : float
The starting time for calculating elapsed time.
Returns:
-------
Dict[str, float]
A dictionary with the average value for each metric across all instruments.
"""
logs = []
if store_dir:
logs.append(str(args))
verbose_logging = True
else:
verbose_logging = False
logging(logs, text=f"Num overlap: {config.inference.num_overlap}", verbose_logging=verbose_logging)
metric_avg = {}
for instr in instruments:
for metric_name in all_metrics:
metric_values = np.array(all_metrics[metric_name][instr])
mean_val = metric_values.mean()
std_val = metric_values.std()
logging(logs, text=f"Instr {instr} {metric_name}: {mean_val:.4f} (Std: {std_val:.4f})", verbose_logging=verbose_logging)
if metric_name not in metric_avg:
metric_avg[metric_name] = 0.0
metric_avg[metric_name] += mean_val
for metric_name in all_metrics:
metric_avg[metric_name] /= len(instruments)
if len(instruments) > 1:
for metric_name in metric_avg:
logging(logs, text=f'Metric avg {metric_name:11s}: {metric_avg[metric_name]:.4f}', verbose_logging=verbose_logging)
logging(logs, text=f"Elapsed time: {time.time() - start_time:.2f} sec", verbose_logging=verbose_logging)
if store_dir:
write_results_in_file(store_dir, logs)
return metric_avg
def valid(
model: torch.nn.Module,
args,
config: ConfigDict,
device: torch.device,
verbose: bool = False
) -> Tuple[dict, dict]:
"""
Validate a trained model on a set of audio mixtures and compute metrics.
This function performs validation by separating audio sources from mixtures,
computing evaluation metrics, and optionally saving results to a file.
Parameters:
----------
model : torch.nn.Module
The trained model for source separation.
args : Namespace
Command-line arguments or equivalent object containing configurations.
config : dict
Configuration dictionary with model and processing parameters.
device : torch.device
The device (CPU or CUDA) to run the model on.
verbose : bool, optional
If True, enables verbose output during processing. Default is False.
Returns:
-------
dict
A dictionary of average metrics across all instruments.
"""
start_time = time.time()
model.eval().to(device)
# dir to save files, if empty no saving
store_dir = getattr(args, 'store_dir', '')
# codec to save files
if 'extension' in config['inference']:
extension = config['inference']['extension']
else:
extension = getattr(args, 'extension', 'wav')
all_mixtures_path = get_mixture_paths(args, verbose, config, extension)
all_metrics = process_audio_files(all_mixtures_path, model, args, config, device, verbose, not verbose)
instruments = prefer_target_instrument(config)
return compute_metric_avg(store_dir, args, instruments, config, all_metrics, start_time), all_metrics
def validate_in_subprocess(
proc_id: int,
queue: torch.multiprocessing.Queue,
all_mixtures_path: List[str],
model: torch.nn.Module,
args,
config: ConfigDict,
device: str,
return_dict
) -> None:
"""
Perform validation on a subprocess with multi-processing support. Each process handles inference on a subset of the mixture files
and updates the shared metrics dictionary.
Parameters:
----------
proc_id : int
The process ID (used to assign metrics to the correct key in `return_dict`).
queue : torch.multiprocessing.Queue
Queue to receive paths to the mixture files for processing.
all_mixtures_path : List[str]
List of paths to the mixture files to be processed.
model : torch.nn.Module
The model to be used for inference.
args : dict
Dictionary containing various argument configurations (e.g., metrics to calculate).
config : ConfigDict
Configuration object containing model settings and training parameters.
device : str
The device to use for inference (e.g., 'cpu', 'cuda:0').
return_dict : torch.multiprocessing.Manager().dict
Shared dictionary to store the results from each process.
Returns:
-------
None
The function modifies the `return_dict` in place, but does not return any value.
"""
m1 = model.eval().to(device)
if proc_id == 0:
progress_bar = tqdm(total=len(all_mixtures_path))
# Initialize metrics dictionary
all_metrics = {
metric: {instr: [] for instr in config.training.instruments}
for metric in args.metrics
}
while True:
current_step, path = queue.get()
if path is None: # check for sentinel value
break
single_metrics = process_audio_files([path], m1, args, config, device, False, False)
pbar_dict = {}
for instr in config.training.instruments:
for metric_name in all_metrics:
all_metrics[metric_name][instr] += single_metrics[metric_name][instr]
if len(single_metrics[metric_name][instr]) > 0:
pbar_dict[f"{metric_name}_{instr}"] = f"{single_metrics[metric_name][instr][0]:.4f}"
if proc_id == 0:
progress_bar.update(current_step - progress_bar.n)
progress_bar.set_postfix(pbar_dict)
# print(f"Inference on process {proc_id}", all_sdr)
return_dict[proc_id] = all_metrics
return
def run_parallel_validation(
verbose: bool,
all_mixtures_path: List[str],
config: ConfigDict,
model: torch.nn.Module,
device_ids: List[int],
args,
return_dict
) -> None:
"""
Run parallel validation using multiple processes. Each process handles a subset of the mixture files and computes the metrics.
The results are stored in a shared dictionary.
Parameters:
----------
verbose : bool
Flag to print detailed information about the validation process.
all_mixtures_path : List[str]
List of paths to the mixture files to be processed.
config : ConfigDict
Configuration object containing model settings and validation parameters.
model : torch.nn.Module
The model to be used for inference.
device_ids : List[int]
List of device IDs (for multi-GPU setups) to use for validation.
args : dict
Dictionary containing various argument configurations (e.g., metrics to calculate).
Returns:
-------
A shared dictionary containing the validation metrics from all processes.
"""
model = model.to('cpu')
try:
# For multiGPU training extract single model
model = model.module
except:
pass
queue = torch.multiprocessing.Queue()
processes = []
for i, device in enumerate(device_ids):
if torch.cuda.is_available():
device = f'cuda:{device}'
else:
device = 'cpu'
p = torch.multiprocessing.Process(
target=validate_in_subprocess,
args=(i, queue, all_mixtures_path, model, args, config, device, return_dict)
)
p.start()
processes.append(p)
for i, path in enumerate(all_mixtures_path):
queue.put((i, path))
for _ in range(len(device_ids)):
queue.put((None, None)) # sentinel value to signal subprocesses to exit
for p in processes:
p.join() # wait for all subprocesses to finish
return
def valid_multi_gpu(
model: torch.nn.Module,
args,
config: ConfigDict,
device_ids: List[int],
verbose: bool = False
) -> Tuple[Dict[str, float], dict]:
"""
Perform validation across multiple GPUs, processing mixtures and computing metrics using parallel processes.
The results from each GPU are aggregated and the average metrics are computed.
Parameters:
----------
model : torch.nn.Module
The model to be used for inference.
args : dict
Dictionary containing various argument configurations, such as file saving directory and codec settings.
config : ConfigDict
Configuration object containing model settings and validation parameters.
device_ids : List[int]
List of device IDs (for multi-GPU setups) to use for validation.
verbose : bool, optional
Flag to print detailed information about the validation process. Default is False.
Returns:
-------
Dict[str, float]
A dictionary containing the average metrics for each metric name.
"""
start_time = time.time()
# dir to save files, if empty no saving
store_dir = getattr(args, 'store_dir', '')
# codec to save files
if 'extension' in config['inference']:
extension = config['inference']['extension']
else:
extension = getattr(args, 'extension', 'wav')
all_mixtures_path = get_mixture_paths(args, verbose, config, extension)
return_dict = torch.multiprocessing.Manager().dict()
run_parallel_validation(verbose, all_mixtures_path, config, model, device_ids, args, return_dict)
all_metrics = dict()
for metric in args.metrics:
all_metrics[metric] = dict()
for instr in config.training.instruments:
all_metrics[metric][instr] = []
for i in range(len(device_ids)):
all_metrics[metric][instr] += return_dict[i][metric][instr]
instruments = prefer_target_instrument(config)
return compute_metric_avg(store_dir, args, instruments, config, all_metrics, start_time), all_metrics
def parse_args(dict_args: Union[Dict, None]) -> argparse.Namespace:
"""
Parse command-line arguments for configuring the model, dataset, and training parameters.
Args:
dict_args: Dict of command-line arguments. If None, arguments will be parsed from sys.argv.
Returns:
Namespace object containing parsed arguments and their values.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c',
help="One of mdx23c, htdemucs, segm_models, mel_band_roformer,"
" bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="Path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint"
" to valid weights")
parser.add_argument("--valid_path", nargs="+", type=str, help="Validate path")
parser.add_argument("--store_dir", type=str, default="", help="Path to store results as wav file")
parser.add_argument("--draw_spectro", type=float, default=0,
help="If --store_dir is set then code will generate spectrograms for resulted stems as well."
" Value defines for how many seconds os track spectrogram will be generated.")
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='List of gpu ids')
parser.add_argument("--num_workers", type=int, default=0, help="Dataloader num_workers")
parser.add_argument("--pin_memory", action='store_true', help="Dataloader pin_memory")
parser.add_argument("--extension", type=str, default='wav', help="Choose extension for validation")
parser.add_argument("--use_tta", action='store_true',
help="Flag adds test time augmentation during inference (polarity and channel inverse)."
"While this triples the runtime, it reduces noise and slightly improves prediction quality.")
parser.add_argument("--metrics", nargs='+', type=str, default=["sdr"],
choices=['sdr', 'l1_freq', 'si_sdr', 'neg_log_wmse', 'aura_stft', 'aura_mrstft', 'bleedless',
'fullness'], help='List of metrics to use.')
parser.add_argument("--lora_checkpoint", type=str, default='', help="Initial checkpoint to LoRA weights")
if dict_args is not None:
args = parser.parse_args([])
args_dict = vars(args)
args_dict.update(dict_args)
args = argparse.Namespace(**args_dict)
else:
args = parser.parse_args()
return args
def check_validation(dict_args):
args = parse_args(dict_args)
torch.backends.cudnn.benchmark = True
try:
torch.multiprocessing.set_start_method('spawn')
except Exception as e:
pass
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point:
load_start_checkpoint(args, model, type_='valid')
print(f"Instruments: {config.training.instruments}")
device_ids = args.device_ids
if torch.cuda.is_available():
device = torch.device(f'cuda:{device_ids[0]}')
else:
device = 'cpu'
print('CUDA is not available. Run validation on CPU. It will be very slow...')
if torch.cuda.is_available() and len(device_ids) > 1:
valid_multi_gpu(model, args, config, device_ids, verbose=False)
else:
valid(model, args, config, device, verbose=True)
if __name__ == "__main__":
check_validation(None)
|