File size: 14,839 Bytes
3978e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
__version__ = '1.0.3'
# Read more here:
# https://huggingface.co/docs/accelerate/index
import argparse
import soundfile as sf
import numpy as np
import time
import glob
from tqdm.auto import tqdm
import os
import torch
import wandb
import auraloss
import torch.nn as nn
from torch.optim import Adam, AdamW, SGD, RAdam, RMSprop
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.nn.functional as F
from accelerate import Accelerator
from dataset import MSSDataset
from utils import get_model_from_config, demix, sdr, prefer_target_instrument
from train import masked_loss, manual_seed, load_not_compatible_weights
import warnings
warnings.filterwarnings("ignore")
def valid(model, valid_loader, args, config, device, verbose=False):
instruments = prefer_target_instrument(config)
all_sdr = dict()
for instr in instruments:
all_sdr[instr] = []
all_mixtures_path = valid_loader
if verbose:
all_mixtures_path = tqdm(valid_loader)
pbar_dict = {}
for path_list in all_mixtures_path:
path = path_list[0]
mix, sr = sf.read(path)
folder = os.path.dirname(path)
res = demix(config, model, mix.T, device, model_type=args.model_type) # mix.T
for instr in instruments:
if instr != 'other' or config.training.other_fix is False:
track, sr1 = sf.read(folder + '/{}.wav'.format(instr))
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals'))
track = mix - track
# sf.write("{}.wav".format(instr), res[instr].T, sr, subtype='FLOAT')
references = np.expand_dims(track, axis=0)
estimates = np.expand_dims(res[instr].T, axis=0)
sdr_val = sdr(references, estimates)[0]
single_val = torch.from_numpy(np.array([sdr_val])).to(device)
all_sdr[instr].append(single_val)
pbar_dict['sdr_{}'.format(instr)] = sdr_val
if verbose:
all_mixtures_path.set_postfix(pbar_dict)
return all_sdr
class MSSValidationDataset(torch.utils.data.Dataset):
def __init__(self, args):
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.wav'))
if len(part) == 0:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
self.list_of_files = all_mixtures_path
def __len__(self):
return len(self.list_of_files)
def __getitem__(self, index):
return self.list_of_files[index]
def train_model(args):
accelerator = Accelerator()
device = accelerator.device
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to start training")
parser.add_argument("--results_path", type=str, help="path to folder where results will be stored (weights, metadata)")
parser.add_argument("--data_path", nargs="+", type=str, help="Dataset data paths. You can provide several folders.")
parser.add_argument("--dataset_type", type=int, default=1, help="Dataset type. Must be one of: 1, 2, 3 or 4. Details here: https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md")
parser.add_argument("--valid_path", nargs="+", type=str, help="validation data paths. You can provide several folders.")
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--device_ids", nargs='+', type=int, default=[0], help='list of gpu ids')
parser.add_argument("--use_multistft_loss", action='store_true', help="Use MultiSTFT Loss (from auraloss package)")
parser.add_argument("--use_mse_loss", action='store_true', help="Use default MSE loss")
parser.add_argument("--use_l1_loss", action='store_true', help="Use L1 loss")
parser.add_argument("--wandb_key", type=str, default='', help='wandb API Key')
parser.add_argument("--pre_valid", action='store_true', help='Run validation before training')
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
manual_seed(args.seed + int(time.time()))
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False # Fix possible slow down with dilation convolutions
torch.multiprocessing.set_start_method('spawn')
model, config = get_model_from_config(args.model_type, args.config_path)
accelerator.print("Instruments: {}".format(config.training.instruments))
os.makedirs(args.results_path, exist_ok=True)
device_ids = args.device_ids
batch_size = config.training.batch_size
# wandb
if accelerator.is_main_process and args.wandb_key is not None and args.wandb_key.strip() != '':
wandb.login(key = args.wandb_key)
wandb.init(project = 'msst-accelerate', config = { 'config': config, 'args': args, 'device_ids': device_ids, 'batch_size': batch_size })
else:
wandb.init(mode = 'disabled')
# Fix for num of steps
config.training.num_steps *= accelerator.num_processes
trainset = MSSDataset(
config,
args.data_path,
batch_size=batch_size,
metadata_path=os.path.join(args.results_path, 'metadata_{}.pkl'.format(args.dataset_type)),
dataset_type=args.dataset_type,
verbose=accelerator.is_main_process,
)
train_loader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
validset = MSSValidationDataset(args)
valid_dataset_length = len(validset)
valid_loader = DataLoader(
validset,
batch_size=1,
shuffle=False,
)
valid_loader = accelerator.prepare(valid_loader)
if args.start_check_point != '':
accelerator.print('Start from checkpoint: {}'.format(args.start_check_point))
if 1:
load_not_compatible_weights(model, args.start_check_point, verbose=False)
else:
model.load_state_dict(
torch.load(args.start_check_point)
)
optim_params = dict()
if 'optimizer' in config:
optim_params = dict(config['optimizer'])
accelerator.print('Optimizer params from config:\n{}'.format(optim_params))
if config.training.optimizer == 'adam':
optimizer = Adam(model.parameters(), lr=config.training.lr, **optim_params)
elif config.training.optimizer == 'adamw':
optimizer = AdamW(model.parameters(), lr=config.training.lr, **optim_params)
elif config.training.optimizer == 'radam':
optimizer = RAdam(model.parameters(), lr=config.training.lr, **optim_params)
elif config.training.optimizer == 'rmsprop':
optimizer = RMSprop(model.parameters(), lr=config.training.lr, **optim_params)
elif config.training.optimizer == 'prodigy':
from prodigyopt import Prodigy
# you can choose weight decay value based on your problem, 0 by default
# We recommend using lr=1.0 (default) for all networks.
optimizer = Prodigy(model.parameters(), lr=config.training.lr, **optim_params)
elif config.training.optimizer == 'adamw8bit':
import bitsandbytes as bnb
optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=config.training.lr, **optim_params)
elif config.training.optimizer == 'sgd':
accelerator.print('Use SGD optimizer')
optimizer = SGD(model.parameters(), lr=config.training.lr, **optim_params)
else:
accelerator.print('Unknown optimizer: {}'.format(config.training.optimizer))
exit()
if accelerator.is_main_process:
print('Processes GPU: {}'.format(accelerator.num_processes))
print("Patience: {} Reduce factor: {} Batch size: {} Optimizer: {}".format(
config.training.patience,
config.training.reduce_factor,
batch_size,
config.training.optimizer,
))
# Reduce LR if no SDR improvements for several epochs
scheduler = ReduceLROnPlateau(
optimizer,
'max',
# patience=accelerator.num_processes * config.training.patience, # This is strange place...
patience=config.training.patience,
factor=config.training.reduce_factor
)
if args.use_multistft_loss:
try:
loss_options = dict(config.loss_multistft)
except:
loss_options = dict()
accelerator.print('Loss options: {}'.format(loss_options))
loss_multistft = auraloss.freq.MultiResolutionSTFTLoss(
**loss_options
)
model, optimizer, train_loader, scheduler = accelerator.prepare(model, optimizer, train_loader, scheduler)
if args.pre_valid:
sdr_list = valid(model, valid_loader, args, config, device, verbose=accelerator.is_main_process)
sdr_list = accelerator.gather(sdr_list)
accelerator.wait_for_everyone()
# print(sdr_list)
sdr_avg = 0.0
instruments = prefer_target_instrument(config)
for instr in instruments:
# print(sdr_list[instr])
sdr_data = torch.cat(sdr_list[instr], dim=0).cpu().numpy()
sdr_val = sdr_data.mean()
accelerator.print("Valid length: {}".format(valid_dataset_length))
accelerator.print("Instr SDR {}: {:.4f} Debug: {}".format(instr, sdr_val, len(sdr_data)))
sdr_val = sdr_data[:valid_dataset_length].mean()
accelerator.print("Instr SDR {}: {:.4f} Debug: {}".format(instr, sdr_val, len(sdr_data)))
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
accelerator.print('SDR Avg: {:.4f}'.format(sdr_avg))
sdr_list = None
accelerator.print('Train for: {}'.format(config.training.num_epochs))
best_sdr = -100
for epoch in range(config.training.num_epochs):
model.train().to(device)
accelerator.print('Train epoch: {} Learning rate: {}'.format(epoch, optimizer.param_groups[0]['lr']))
loss_val = 0.
total = 0
pbar = tqdm(train_loader, disable=not accelerator.is_main_process)
for i, (batch, mixes) in enumerate(pbar):
y = batch
x = mixes
if args.model_type in ['mel_band_roformer', 'bs_roformer']:
# loss is computed in forward pass
loss = model(x, y)
else:
y_ = model(x)
if args.use_multistft_loss:
y1_ = torch.reshape(y_, (y_.shape[0], y_.shape[1] * y_.shape[2], y_.shape[3]))
y1 = torch.reshape(y, (y.shape[0], y.shape[1] * y.shape[2], y.shape[3]))
loss = loss_multistft(y1_, y1)
# We can use many losses at the same time
if args.use_mse_loss:
loss += 1000 * nn.MSELoss()(y1_, y1)
if args.use_l1_loss:
loss += 1000 * F.l1_loss(y1_, y1)
elif args.use_mse_loss:
loss = nn.MSELoss()(y_, y)
elif args.use_l1_loss:
loss = F.l1_loss(y_, y)
else:
loss = masked_loss(
y_,
y,
q=config.training.q,
coarse=config.training.coarse_loss_clip
)
accelerator.backward(loss)
if config.training.grad_clip:
accelerator.clip_grad_norm_(model.parameters(), config.training.grad_clip)
optimizer.step()
optimizer.zero_grad()
li = loss.item()
loss_val += li
total += 1
if accelerator.is_main_process:
wandb.log({'loss': 100 * li, 'avg_loss': 100 * loss_val / (i + 1), 'total': total, 'loss_val': loss_val, 'i': i })
pbar.set_postfix({'loss': 100 * li, 'avg_loss': 100 * loss_val / (i + 1)})
if accelerator.is_main_process:
print('Training loss: {:.6f}'.format(loss_val / total))
wandb.log({'train_loss': loss_val / total, 'epoch': epoch})
# Save last
store_path = args.results_path + '/last_{}.ckpt'.format(args.model_type)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
accelerator.save(unwrapped_model.state_dict(), store_path)
sdr_list = valid(model, valid_loader, args, config, device, verbose=accelerator.is_main_process)
sdr_list = accelerator.gather(sdr_list)
accelerator.wait_for_everyone()
sdr_avg = 0.0
instruments = prefer_target_instrument(config)
for instr in instruments:
if accelerator.is_main_process and 0:
print(sdr_list[instr])
sdr_data = torch.cat(sdr_list[instr], dim=0).cpu().numpy()
# sdr_val = sdr_data.mean()
sdr_val = sdr_data[:valid_dataset_length].mean()
if accelerator.is_main_process:
print("Instr SDR {}: {:.4f} Debug: {}".format(instr, sdr_val, len(sdr_data)))
wandb.log({ f'{instr}_sdr': sdr_val })
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
if accelerator.is_main_process:
print('SDR Avg: {:.4f}'.format(sdr_avg))
wandb.log({'sdr_avg': sdr_avg, 'best_sdr': best_sdr})
if accelerator.is_main_process:
if sdr_avg > best_sdr:
store_path = args.results_path + '/model_{}_ep_{}_sdr_{:.4f}.ckpt'.format(args.model_type, epoch, sdr_avg)
print('Store weights: {}'.format(store_path))
unwrapped_model = accelerator.unwrap_model(model)
accelerator.save(unwrapped_model.state_dict(), store_path)
best_sdr = sdr_avg
scheduler.step(sdr_avg)
sdr_list = None
accelerator.wait_for_everyone()
if __name__ == "__main__":
train_model(None)
|