File size: 4,792 Bytes
3978e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
audio:
  chunk_size: 485100
  dim_f: 1024
  dim_t: 801 # don't work (use in model)
  hop_length: 441 # don't work (use in model)
  n_fft: 2048
  num_channels: 2
  sample_rate: 44100
  min_mean_abs: 0.000

lora:
  r: 8
  lora_alpha: 16 # alpha / rank > 1
  lora_dropout: 0.05
  merge_weights: False
  fan_in_fan_out: False
  enable_lora: [True, False, True] # This for QKV
  # enable_lora: [True] # For non-Roformers architectures

model:
  dim: 384
  depth: 8
  stereo: true
  num_stems: 4
  time_transformer_depth: 1
  freq_transformer_depth: 1
  linear_transformer_depth: 0
  freqs_per_bands: !!python/tuple
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 12
    - 12
    - 12
    - 12
    - 12
    - 12
    - 12
    - 12
    - 24
    - 24
    - 24
    - 24
    - 24
    - 24
    - 24
    - 24
    - 48
    - 48
    - 48
    - 48
    - 48
    - 48
    - 48
    - 48
    - 128
    - 129
  dim_head: 64
  heads: 8
  attn_dropout: 0.1
  ff_dropout: 0.1
  flash_attn: true
  dim_freqs_in: 1025
  stft_n_fft: 2048
  stft_hop_length: 441
  stft_win_length: 2048
  stft_normalized: false
  mask_estimator_depth: 2
  multi_stft_resolution_loss_weight: 1.0
  multi_stft_resolutions_window_sizes: !!python/tuple
  - 4096
  - 2048
  - 1024
  - 512
  - 256
  multi_stft_hop_size: 147
  multi_stft_normalized: False
  mlp_expansion_factor: 2
  use_torch_checkpoint: False # it allows to greatly reduce GPU memory consumption during training (not fully tested)
  skip_connection: False # Enable skip connection between transformer blocks - can solve problem with gradients and probably faster training

training:
  batch_size: 1
  gradient_accumulation_steps: 1
  grad_clip: 0
  instruments: ['drums', 'bass', 'other', 'vocals']
  patience: 3
  reduce_factor: 0.95
  target_instrument: null
  num_epochs: 1000
  num_steps: 1000
  augmentation: false # enable augmentations by audiomentations and pedalboard
  augmentation_type: simple1
  use_mp3_compress: false # Deprecated
  augmentation_mix: true # Mix several stems of the same type with some probability
  augmentation_loudness: true # randomly change loudness of each stem
  augmentation_loudness_type: 1 # Type 1 or 2
  augmentation_loudness_min: 0.5
  augmentation_loudness_max: 1.5
  q: 0.95
  coarse_loss_clip: true
  ema_momentum: 0.999
  # optimizer: prodigy
  optimizer: adam
  # lr: 1.0
  lr: 1.0e-5
  other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
  use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true

augmentations:
  enable: true # enable or disable all augmentations (to fast disable if needed)
  loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
  loudness_min: 0.5
  loudness_max: 1.5
  mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
  mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
    - 0.2
    - 0.02
  mixup_loudness_min: 0.5
  mixup_loudness_max: 1.5

  all:
    channel_shuffle: 0.5 # Set 0 or lower to disable
    random_inverse: 0.1 # inverse track (better lower probability)
    random_polarity: 0.5 # polarity change (multiply waveform to -1)

  vocals:
      pitch_shift: 0.1
      pitch_shift_min_semitones: -5
      pitch_shift_max_semitones: 5
      seven_band_parametric_eq: 0.1
      seven_band_parametric_eq_min_gain_db: -9
      seven_band_parametric_eq_max_gain_db: 9
      tanh_distortion: 0.1
      tanh_distortion_min: 0.1
      tanh_distortion_max: 0.7
  bass:
    pitch_shift: 0.1
    pitch_shift_min_semitones: -2
    pitch_shift_max_semitones: 2
    seven_band_parametric_eq: 0.1
    seven_band_parametric_eq_min_gain_db: -3
    seven_band_parametric_eq_max_gain_db: 6
    tanh_distortion: 0.1
    tanh_distortion_min: 0.1
    tanh_distortion_max: 0.5
  drums:
    pitch_shift: 0.1
    pitch_shift_min_semitones: -5
    pitch_shift_max_semitones: 5
    seven_band_parametric_eq: 0.1
    seven_band_parametric_eq_min_gain_db: -9
    seven_band_parametric_eq_max_gain_db: 9
    tanh_distortion: 0.1
    tanh_distortion_min: 0.1
    tanh_distortion_max: 0.6
  other:
    pitch_shift: 0.1
    pitch_shift_min_semitones: -4
    pitch_shift_max_semitones: 4
    gaussian_noise: 0.1
    gaussian_noise_min_amplitude: 0.001
    gaussian_noise_max_amplitude: 0.015
    time_stretch: 0.1
    time_stretch_min_rate: 0.8
    time_stretch_max_rate: 1.25


inference:
  batch_size: 2
  dim_t: 1101
  num_overlap: 2