import gradio as gr import subprocess import os import numpy as np import librosa import soundfile as sf import matplotlib.pyplot as plt import librosa.display import gc import torch import time import warnings import json from scipy import signal from scipy.stats import kurtosis, skew import spaces import urllib.request from datetime import timedelta warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "true" torch.set_float32_matmul_precision("high") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") output_folder = "output_file" os.makedirs(output_folder, exist_ok=True) print(f"Output folder ready: {output_folder}") def setup(): os.makedirs("Apollo/model", exist_ok=True) os.makedirs("Apollo/configs", exist_ok=True) files_to_download = { "Apollo/inference.py": "https://raw.githubusercontent.com/jarredou/Apollo-Colab-Inference/main/inference.py", "Apollo/model/pytorch_model.bin": "https://huggingface.co/JusperLee/Apollo/resolve/main/pytorch_model.bin", "Apollo/model/apollo_model.ckpt": "https://huggingface.co/jarredou/lew_apollo_vocal_enhancer/resolve/main/apollo_model.ckpt", "Apollo/model/apollo_model_v2.ckpt": "https://huggingface.co/jarredou/lew_apollo_vocal_enhancer/resolve/main/apollo_model_v2.ckpt", "Apollo/model/apollo_universal_model.ckpt": "https://huggingface.co/ASesYusuf1/Apollo_universal_model/resolve/main/apollo_universal_model.ckpt", "Apollo/configs/config_apollo_vocal.yaml": "https://huggingface.co/jarredou/lew_apollo_vocal_enhancer/resolve/main/config_apollo_vocal.yaml", "Apollo/configs/config_apollo.yaml": "https://huggingface.co/ASesYusuf1/Apollo_universal_model/resolve/main/config_apollo.yaml", "Apollo/configs/apollo.yaml": "https://huggingface.co/JusperLee/Apollo/resolve/main/apollo.yaml", } for file_path, url in files_to_download.items(): if not os.path.exists(file_path): print(f"Downloading {file_path}...") try: subprocess.run(["wget", "-O", file_path, url], check=True, capture_output=True, text=True) print(f"Downloaded {file_path} with wget") except (subprocess.CalledProcessError, FileNotFoundError) as e: print(f"wget failed for {file_path}: {e}. Falling back to urllib...") try: urllib.request.urlretrieve(url, file_path) print(f"Downloaded {file_path} with urllib") except Exception as e: print(f"Failed to download {file_path}: {e}") raise Exception(f"Failed to download {file_path}") try: setup() except Exception as e: print(f"Setup failed: {e}") raise @spaces.GPU(duration=120) # Süreyi 60'tan 120 saniyeye çıkardım def process_audio(input_file, model, chunk_size, overlap, progress=gr.Progress()): if not input_file: return "No file uploaded.", None, None, None input_file_path = input_file original_file_name = os.path.splitext(os.path.basename(input_file_path))[0] output_file_path = f'{output_folder}/{original_file_name}_processed.wav' model_paths = { 'MP3 Enhancer': ('Apollo/model/pytorch_model.bin', 'Apollo/configs/apollo.yaml'), 'Lew Vocal Enhancer': ('Apollo/model/apollo_model.ckpt', 'Apollo/configs/apollo.yaml'), 'Lew Vocal Enhancer v2 (beta)': ('Apollo/model/apollo_model_v2.ckpt', 'Apollo/configs/config_apollo_vocal.yaml'), 'Apollo Universal Model': ('Apollo/model/apollo_universal_model.ckpt', 'Apollo/configs/config_apollo.yaml') } if model not in model_paths: return "Invalid model selected.", None, None, None ckpt, config = model_paths[model] if not os.path.exists(ckpt) or not os.path.exists(config): return f"Model files not found: {ckpt} or {config}", None, None, None print(f"Model selected: {model}") print("Processing started. Please wait...") start_time = time.time() command = [ "python", "Apollo/inference.py", "--in_wav", input_file_path, "--out_wav", output_file_path, "--chunk_size", str(chunk_size), "--overlap", str(overlap), "--ckpt", ckpt, "--config", config ] try: process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True ) progress(0.0, desc="Processing started...") for line in process.stdout: try: data = json.loads(line.strip()) if "percentage" in data: percentage = data["percentage"] elapsed_time = data["elapsed_time"] if percentage > 0: time_remaining = (elapsed_time / percentage) * (100 - percentage) time_remaining_str = str(timedelta(seconds=int(time_remaining))) else: time_remaining_str = "Calculating..." progress(percentage / 100, desc=f"Processing: {percentage:.1f}% | Time remaining: {time_remaining_str}") else: print(f"Processing: {line.strip()}") except json.JSONDecodeError: print(f"Processing: {line.strip()}") process.stdout.close() process.wait() if process.returncode != 0: return f"Error processing audio: Non-zero exit code {process.returncode}.", None, None, None total_duration = str(timedelta(seconds=int(time.time() - start_time))) progress(1.0, desc=f"Processing completed. Total time: {total_duration}") return output_file_path, input_file_path, None, f"Processing completed. Total time: {total_duration}" except Exception as e: return f"Error in process_audio: {str(e)}", None, None, None def mid_side_separation(audio_file): try: print(f"Loading audio file: {audio_file}") y, sr = librosa.load(audio_file, sr=None, mono=False) print(f"Audio shape: {y.shape}, Sample rate: {sr}") if y.ndim == 1: raise ValueError("Stereo audio file required! Please upload a stereo .wav or .mp3 file.") left, right = y[0], y[1] print("Performing Mid/Side separation...") mid = (left + right) / 2 side = (left - right) / 2 mid_path = os.path.join(output_folder, "mid.wav") side_path = os.path.join(output_folder, "side.wav") print(f"Saving Mid to {mid_path} and Side to {side_path}") sf.write(mid_path, mid, sr) sf.write(side_path, side, sr) print("Mid/Side separation completed.") return mid_path, side_path, sr except Exception as e: print(f"Error in mid/side separation: {str(e)}") raise ValueError(f"Error in mid/side separation: {str(e)}") def mid_side_combine(mid_file, side_file, output_path): try: print(f"Combining Mid: {mid_file} and Side: {side_file}") mid_data, sr_mid = librosa.load(mid_file, sr=None, mono=True) side_data, sr_side = librosa.load(side_file, sr=None, mono=True) if sr_mid != sr_side: raise ValueError("Mid and Side sample rates do not match!") left = mid_data + side_data right = mid_data - side_data stereo = np.stack([left, right], axis=0) print(f"Saving combined audio to {output_path}") sf.write(output_path, stereo.T, sr_mid) return output_path except Exception as e: print(f"Error in mid/side combination: {str(e)}") raise ValueError(f"Error in mid/side combination: {str(e)}") @spaces.GPU(duration=120) # Süreyi 60'tan 120 saniyeye çıkardım def process_mid_side_upscale(input_file, model, chunk_size, overlap, progress=gr.Progress()): if not input_file: return "No file uploaded.", None, None, None try: total_start_time = time.time() print(f"Starting Mid/Side upscale for: {input_file}") # Mid/Side ayrımı print("Separating Mid and Side channels...") mid_path, side_path, sr = mid_side_separation(input_file) print(f"Mid path: {mid_path}, Side path: {side_path}, Sample rate: {sr}") # Mid kanalını işle print("Processing Mid channel...") mid_restored, _, _, mid_status = process_audio(mid_path, model, chunk_size, overlap, progress=progress) if not mid_restored.endswith(".wav"): return f"Mid channel processing failed: {mid_status}", None, None, None print(f"Mid channel processed: {mid_restored}") # Side kanalını işle print("Processing Side channel...") side_restored, _, _, side_status = process_audio(side_path, model, chunk_size, overlap, progress=progress) if not side_restored.endswith(".wav"): return f"Side channel processing failed: {side_status}", None, None, None print(f"Side channel processed: {side_restored}") # Orijinal dosya adını al ve çıktı yolunu oluştur original_file_name = os.path.splitext(os.path.basename(input_file))[0] final_output_path = os.path.join(output_folder, f"{original_file_name}_upscaled.wav") # Mid ve Side kanallarını birleştir print("Combining processed Mid and Side channels...") final_audio = mid_side_combine(mid_restored, side_restored, final_output_path) print(f"Final audio saved: {final_audio}") total_duration = str(timedelta(seconds=int(time.time() - total_start_time))) progress(1.0, desc=f"Mid/Side upscaling completed. Total time: {total_duration}") return final_audio, input_file, None, f"Mid/Side upscaling completed. Total time: {total_duration}" except Exception as e: error_msg = f"Error in Mid/Side upscale: {str(e)}" print(error_msg) return error_msg, None, None, None def spectrum(audio_file): if not audio_file: return None, "No file selected" try: chunk_duration = 30 hop_length = 512 n_fft = 2048 with sf.SoundFile(audio_file) as sf_desc: duration = len(sf_desc) / sf_desc.samplerate num_chunks = int(np.ceil(duration / chunk_duration)) freqs = librosa.fft_frequencies(sr=sf_desc.samplerate, n_fft=n_fft) total_frames = int(np.ceil(duration * sf_desc.samplerate / hop_length)) S_db_full = np.zeros((len(freqs), total_frames)) for chunk_idx in range(num_chunks): start_time = chunk_idx * chunk_duration y, sr = librosa.load(audio_file, offset=start_time, duration=chunk_duration, sr=None) S_chunk = np.abs(librosa.stft(y, n_fft=n_fft, hop_length=hop_length)) S_db_chunk = librosa.amplitude_to_db(S_chunk, ref=np.max) start_frame = int(start_time * sr / hop_length) end_frame = start_frame + S_db_chunk.shape[1] S_db_full[:, start_frame:end_frame] = S_db_chunk del S_chunk, S_db_chunk gc.collect() downsample_factor = 4 S_db_downsampled = S_db_full[:, ::downsample_factor] threshold = np.max(S_db_downsampled) - 60 significant_freqs = freqs[np.any(S_db_downsampled > threshold, axis=1)] max_freq = np.max(significant_freqs) if len(significant_freqs) > 0 else sr / 2 plt.figure(figsize=(15, 8)) display_hop = 4 librosa.display.specshow( S_db_full[:, ::display_hop], sr=sr, hop_length=hop_length * display_hop, x_axis='time', y_axis='hz', cmap='magma' ) freq_ticks = [2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000] plt.yticks(freq_ticks, [f"{f/1000:.0f}" for f in freq_ticks]) plt.colorbar(format='%+2.0f dB') plt.title('Frequency Spectrum', fontsize=16) plt.xlabel('Time (seconds)', fontsize=12) plt.ylabel('Frequency (kHz)', fontsize=12) output_image_path = os.path.join(output_folder, 'spectrum.png') plt.savefig(output_image_path, bbox_inches='tight', dpi=150) plt.close() del S_db_full, S_db_downsampled gc.collect() closest_freq = min(freq_ticks, key=lambda x: abs(x - max_freq)) return output_image_path, f"Maximum Frequency {int(closest_freq)} Hz" except Exception as e: return None, f"Error: {str(e)}" def show_credits(): return """This Web UI was created using AI tools and written by U.Z.S. **Apollo-Colab-Inference** (https://github.com/jarredou/Apollo-Colab-Inference): Developed by Jarred Ou, provides a colab-based inference implementation of the Apollo model. **Apollo** (https://github.com/JusperLee/Apollo): Created by Jusper Lee, a deep learning-based model for vocal clarity and audio quality. """ app = gr.Blocks( css=""" .gradio-container { background-color: #121212; color: white; font-family: Arial, sans-serif; } .gradio-button { background-color: #6a0dad; color: white; border: 1px solid #5a0b8a; border-radius: 5px; padding: 10px 20px; } .gradio-button:hover { background-color: #5a0b8a; } .gradio-input, .gradio-file { background-color: rgba(106, 13, 173, 0.2); border: 1px solid #5a0b8a; color: white; border-radius: 5px; } .gradio-input:focus, .gradio-file:focus { border-color: #ffffff; box-shadow: 0 0 5px rgba(255, 255, 255, 0.5); } .gradio-slider { background-color: rgba(106, 13, 173, 0.2); color: white; } .gradio-label { color: white; font-weight: bold; } .gradio-tabs { background-color: rgba(106, 13, 173, 0.2); } .gradio-tab { padding: 15px; } .model-note { color: #ff9800; font-size: 0.9em; } /* Hide footer elements */ footer {display: none !important;} #footer {display: none !important;} .gradio-footer {display: none !important;} @media (max-width: 600px) { .gradio-button { width: 100%; font-size: 16px; } .gradio-input, .gradio-file { width: 100%; font-size: 16px; } .gradio-slider { width: 100%; } .gradio-label { font-size: 14px; } } """ ) with app: with gr.Tab("Audio Enhancer"): gr.Markdown("# 🎵 Audio Enhancement Tool") with gr.Row(): with gr.Column(): audio_input = gr.File( label="Select Audio File", file_types=[".wav", ".mp3"], elem_classes=["gradio-file"] ) model = gr.Radio( ["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"], label="Select Model", value="Apollo Universal Model" ) gr.Markdown("**For Universal model, please set Chunk Size to 19**", elem_classes="model-note") with gr.Row(): chunk_size = gr.Slider( minimum=3, maximum=25, step=1, value=19, label="Chunk Size", interactive=True ) overlap = gr.Slider( minimum=2, maximum=10, step=1, value=2, label="Overlap", interactive=True ) process_button = gr.Button("Process Audio", variant="primary") with gr.Column(): output_audio = gr.Audio(label="Processed Audio") original_audio = gr.Audio(label="Original Audio") status_message = gr.Textbox(label="Status", interactive=False) process_button.click( process_audio, inputs=[audio_input, model, chunk_size, overlap], outputs=[output_audio, original_audio, status_message, status_message] ) with gr.Tab("Spectrum Analyzer"): gr.Markdown("# 📊 Frequency Spectrum Analysis") with gr.Row(): with gr.Column(): spectrogram_input = gr.File( label="Select Audio File", file_types=[".wav", ".mp3"], elem_classes=["gradio-file"] ) spectrum_button = gr.Button("Analyze Spectrum", variant="primary") with gr.Column(): output_spectrum = gr.Image(label="Frequency Spectrum", interactive=False) max_freq_info = gr.Textbox(label="Frequency Analysis", interactive=False) spectrum_button.click( spectrum, inputs=[spectrogram_input], outputs=[output_spectrum, max_freq_info] ) with gr.Tab("Mid/Side Processor"): gr.Markdown("# 🎚️ Mid/Side Channel Processing") gr.Markdown("Upload a stereo audio file to separate, enhance, and recombine its Mid and Side channels.") with gr.Row(): with gr.Column(): ms_input = gr.File( label="Select Stereo Audio File", file_types=[".wav", ".mp3"], elem_classes=["gradio-file"] ) ms_model = gr.Radio( ["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"], label="Select Model", value="Apollo Universal Model" ) with gr.Row(): ms_chunk_size = gr.Slider( minimum=3, maximum=25, step=1, value=19, label="Chunk Size" ) ms_overlap = gr.Slider( minimum=2, maximum=10, step=1, value=2, label="Overlap" ) ms_process_button = gr.Button("Process Mid/Side", variant="primary") with gr.Column(): ms_output = gr.Audio(label="Processed Audio") ms_original = gr.Audio(label="Original Audio") ms_status_message = gr.Textbox(label="Status", interactive=False) ms_process_button.click( process_mid_side_upscale, inputs=[ms_input, ms_model, ms_chunk_size, ms_overlap], outputs=[ms_output, ms_original, ms_status_message, ms_status_message] ) with gr.Tab("About"): gr.Markdown("## ℹ️ About This Tool") gr.Markdown(show_credits()) gr.Markdown("### 🚀 Features") gr.Markdown(""" - High-quality audio enhancement using Apollo models - Frequency spectrum visualization - Advanced Mid/Side channel processing - GPU-accelerated processing """) gr.Markdown("") if __name__ == "__main__": app.launch( server_name="0.0.0.0", server_port=7860, show_api=False, )