Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,33 +20,10 @@ checkpoints = {
|
|
| 20 |
}
|
| 21 |
loaded = None
|
| 22 |
|
| 23 |
-
|
| 24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 25 |
if torch.cuda.is_available():
|
| 26 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 27 |
|
| 28 |
-
if SAFETY_CHECKER:
|
| 29 |
-
from safety_checker import StableDiffusionSafetyChecker
|
| 30 |
-
from transformers import CLIPFeatureExtractor
|
| 31 |
-
|
| 32 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 33 |
-
"CompVis/stable-diffusion-safety-checker"
|
| 34 |
-
).to("cuda")
|
| 35 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 36 |
-
"openai/clip-vit-base-patch32"
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
def check_nsfw_images(
|
| 40 |
-
images: list[Image.Image],
|
| 41 |
-
) -> tuple[list[Image.Image], list[bool]]:
|
| 42 |
-
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
| 43 |
-
has_nsfw_concepts = safety_checker(
|
| 44 |
-
images=[images],
|
| 45 |
-
clip_input=safety_checker_input.pixel_values.to("cuda")
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
return images, has_nsfw_concepts
|
| 49 |
-
|
| 50 |
# Function
|
| 51 |
@spaces.GPU(enable_queue=True)
|
| 52 |
def generate_image(prompt, ckpt):
|
|
@@ -63,16 +40,8 @@ def generate_image(prompt, ckpt):
|
|
| 63 |
|
| 64 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 65 |
|
| 66 |
-
if SAFETY_CHECKER:
|
| 67 |
-
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
| 68 |
-
if any(has_nsfw_concepts):
|
| 69 |
-
gr.Warning("NSFW content detected.")
|
| 70 |
-
return Image.new("RGB", (512, 512))
|
| 71 |
-
return images[0]
|
| 72 |
return results.images[0]
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
# Gradio Interface
|
| 77 |
description = """
|
| 78 |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
|
@@ -98,4 +67,4 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 98 |
outputs=img,
|
| 99 |
)
|
| 100 |
|
| 101 |
-
demo.queue().launch()
|
|
|
|
| 20 |
}
|
| 21 |
loaded = None
|
| 22 |
|
|
|
|
| 23 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Function
|
| 28 |
@spaces.GPU(enable_queue=True)
|
| 29 |
def generate_image(prompt, ckpt):
|
|
|
|
| 40 |
|
| 41 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
return results.images[0]
|
| 44 |
|
|
|
|
|
|
|
| 45 |
# Gradio Interface
|
| 46 |
description = """
|
| 47 |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
|
|
|
| 67 |
outputs=img,
|
| 68 |
)
|
| 69 |
|
| 70 |
+
demo.queue().launch()
|