AP123 commited on
Commit
6e170c6
·
verified ·
1 Parent(s): 830d0b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -36
app.py CHANGED
@@ -7,11 +7,12 @@ from PIL import Image
7
 
8
  import numpy as np
9
  import os
10
- import spaces # Import spaces for ZeroGPU compatibility
 
11
 
12
 
13
  # Load model and processor
14
- model_path = "deepseek-ai/Janus-1.3B"
15
  config = AutoConfig.from_pretrained(model_path)
16
  language_config = config.language_config
17
  language_config._attn_implementation = 'eager'
@@ -26,9 +27,9 @@ else:
26
  vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
27
  tokenizer = vl_chat_processor.tokenizer
28
  cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
29
- # Multimodal Understanding function
30
  @torch.inference_mode()
31
- @spaces.GPU(duration=120)
32
  # Multimodal Understanding function
33
  def multimodal_understanding(image, question, seed, top_p, temperature):
34
  # Clear CUDA cache before generating
@@ -41,11 +42,11 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
41
 
42
  conversation = [
43
  {
44
- "role": "User",
45
  "content": f"<image_placeholder>\n{question}",
46
  "images": [image],
47
  },
48
- {"role": "Assistant", "content": ""},
49
  ]
50
 
51
  pil_images = [Image.fromarray(image)]
@@ -94,21 +95,26 @@ def generate(input_ids,
94
 
95
  pkv = None
96
  for i in range(image_token_num_per_image):
97
- outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
98
- use_cache=True,
99
- past_key_values=pkv)
100
- pkv = outputs.past_key_values
101
- hidden_states = outputs.last_hidden_state
102
- logits = vl_gpt.gen_head(hidden_states[:, -1, :])
103
- logit_cond = logits[0::2, :]
104
- logit_uncond = logits[1::2, :]
105
- logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
106
- probs = torch.softmax(logits / temperature, dim=-1)
107
- next_token = torch.multinomial(probs, num_samples=1)
108
- generated_tokens[:, i] = next_token.squeeze(dim=-1)
109
- next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
110
- img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
111
- inputs_embeds = img_embeds.unsqueeze(dim=1)
 
 
 
 
 
112
  patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
113
  shape=[parallel_size, 8, width // patch_size, height // patch_size])
114
 
@@ -126,10 +132,11 @@ def unpack(dec, width, height, parallel_size=5):
126
 
127
 
128
  @torch.inference_mode()
129
- @spaces.GPU(duration=120) # Specify a duration to avoid timeout
130
  def generate_image(prompt,
131
  seed=None,
132
- guidance=5):
 
133
  # Clear CUDA cache and avoid tracking gradients
134
  torch.cuda.empty_cache()
135
  # Set the seed for reproducible results
@@ -142,30 +149,31 @@ def generate_image(prompt,
142
  parallel_size = 5
143
 
144
  with torch.no_grad():
145
- messages = [{'role': 'User', 'content': prompt},
146
- {'role': 'Assistant', 'content': ''}]
147
  text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
148
  sft_format=vl_chat_processor.sft_format,
149
  system_prompt='')
150
  text = text + vl_chat_processor.image_start_tag
 
151
  input_ids = torch.LongTensor(tokenizer.encode(text))
152
  output, patches = generate(input_ids,
153
  width // 16 * 16,
154
  height // 16 * 16,
155
  cfg_weight=guidance,
156
- parallel_size=parallel_size)
 
157
  images = unpack(patches,
158
  width // 16 * 16,
159
- height // 16 * 16)
160
-
161
- return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
162
 
 
163
 
164
 
165
  # Gradio interface
166
  with gr.Blocks() as demo:
167
  gr.Markdown(value="# Multimodal Understanding")
168
- # with gr.Row():
169
  with gr.Row():
170
  image_input = gr.Image()
171
  with gr.Column():
@@ -182,11 +190,11 @@ with gr.Blocks() as demo:
182
  examples=[
183
  [
184
  "explain this meme",
185
- "doge.png",
186
  ],
187
  [
188
  "Convert the formula into latex code.",
189
- "equation.png",
190
  ],
191
  ],
192
  inputs=[question_input, image_input],
@@ -199,8 +207,9 @@ with gr.Blocks() as demo:
199
 
200
  with gr.Row():
201
  cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
 
202
 
203
- prompt_input = gr.Textbox(label="Prompt")
204
  seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
205
 
206
  generation_button = gr.Button("Generate Images")
@@ -208,9 +217,12 @@ with gr.Blocks() as demo:
208
  image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
209
 
210
  examples_t2i = gr.Examples(
211
- label="Text to image generation examples. (Tips for designing prompts: Adding description like 'digital art' at the end of the prompt or writing the prompt in more detail can help produce better images!)",
212
  examples=[
213
  "Master shifu racoon wearing drip attire as a street gangster.",
 
 
 
214
  "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
215
  "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
216
  ],
@@ -225,8 +237,9 @@ with gr.Blocks() as demo:
225
 
226
  generation_button.click(
227
  fn=generate_image,
228
- inputs=[prompt_input, seed_input, cfg_weight_input],
229
  outputs=image_output
230
  )
231
 
232
- demo.launch(share=True)
 
 
7
 
8
  import numpy as np
9
  import os
10
+ import time
11
+ # import spaces # Import spaces for ZeroGPU compatibility
12
 
13
 
14
  # Load model and processor
15
+ model_path = "deepseek-ai/Janus-Pro-7B"
16
  config = AutoConfig.from_pretrained(model_path)
17
  language_config = config.language_config
18
  language_config._attn_implementation = 'eager'
 
27
  vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
28
  tokenizer = vl_chat_processor.tokenizer
29
  cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
30
+
31
  @torch.inference_mode()
32
+ # @spaces.GPU(duration=120)
33
  # Multimodal Understanding function
34
  def multimodal_understanding(image, question, seed, top_p, temperature):
35
  # Clear CUDA cache before generating
 
42
 
43
  conversation = [
44
  {
45
+ "role": "<|User|>",
46
  "content": f"<image_placeholder>\n{question}",
47
  "images": [image],
48
  },
49
+ {"role": "<|Assistant|>", "content": ""},
50
  ]
51
 
52
  pil_images = [Image.fromarray(image)]
 
95
 
96
  pkv = None
97
  for i in range(image_token_num_per_image):
98
+ with torch.no_grad():
99
+ outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
100
+ use_cache=True,
101
+ past_key_values=pkv)
102
+ pkv = outputs.past_key_values
103
+ hidden_states = outputs.last_hidden_state
104
+ logits = vl_gpt.gen_head(hidden_states[:, -1, :])
105
+ logit_cond = logits[0::2, :]
106
+ logit_uncond = logits[1::2, :]
107
+ logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
108
+ probs = torch.softmax(logits / temperature, dim=-1)
109
+ next_token = torch.multinomial(probs, num_samples=1)
110
+ generated_tokens[:, i] = next_token.squeeze(dim=-1)
111
+ next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
112
+
113
+ img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
114
+ inputs_embeds = img_embeds.unsqueeze(dim=1)
115
+
116
+
117
+
118
  patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
119
  shape=[parallel_size, 8, width // patch_size, height // patch_size])
120
 
 
132
 
133
 
134
  @torch.inference_mode()
135
+ # @spaces.GPU(duration=120) # Specify a duration to avoid timeout
136
  def generate_image(prompt,
137
  seed=None,
138
+ guidance=5,
139
+ t2i_temperature=1.0):
140
  # Clear CUDA cache and avoid tracking gradients
141
  torch.cuda.empty_cache()
142
  # Set the seed for reproducible results
 
149
  parallel_size = 5
150
 
151
  with torch.no_grad():
152
+ messages = [{'role': '<|User|>', 'content': prompt},
153
+ {'role': '<|Assistant|>', 'content': ''}]
154
  text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
155
  sft_format=vl_chat_processor.sft_format,
156
  system_prompt='')
157
  text = text + vl_chat_processor.image_start_tag
158
+
159
  input_ids = torch.LongTensor(tokenizer.encode(text))
160
  output, patches = generate(input_ids,
161
  width // 16 * 16,
162
  height // 16 * 16,
163
  cfg_weight=guidance,
164
+ parallel_size=parallel_size,
165
+ temperature=t2i_temperature)
166
  images = unpack(patches,
167
  width // 16 * 16,
168
+ height // 16 * 16,
169
+ parallel_size=parallel_size)
 
170
 
171
+ return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
172
 
173
 
174
  # Gradio interface
175
  with gr.Blocks() as demo:
176
  gr.Markdown(value="# Multimodal Understanding")
 
177
  with gr.Row():
178
  image_input = gr.Image()
179
  with gr.Column():
 
190
  examples=[
191
  [
192
  "explain this meme",
193
+ "images/doge.png",
194
  ],
195
  [
196
  "Convert the formula into latex code.",
197
+ "images/equation.png",
198
  ],
199
  ],
200
  inputs=[question_input, image_input],
 
207
 
208
  with gr.Row():
209
  cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
210
+ t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
211
 
212
+ prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)")
213
  seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
214
 
215
  generation_button = gr.Button("Generate Images")
 
217
  image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
218
 
219
  examples_t2i = gr.Examples(
220
+ label="Text to image generation examples.",
221
  examples=[
222
  "Master shifu racoon wearing drip attire as a street gangster.",
223
+ "The face of a beautiful girl",
224
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
225
+ "A glass of red wine on a reflective surface.",
226
  "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
227
  "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
228
  ],
 
237
 
238
  generation_button.click(
239
  fn=generate_image,
240
+ inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
241
  outputs=image_output
242
  )
243
 
244
+ demo.launch(share=True)
245
+ # demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")