Spaces:
Build error
Build error
File size: 21,200 Bytes
a983ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/12_optimizer.ipynb.
# %% ../nbs/12_optimizer.ipynb 2
from __future__ import annotations
from .torch_basics import *
# %% auto 0
__all__ = ['pytorch_hp_map', 'Optimizer', 'sgd_step', 'weight_decay', 'l2_reg', 'average_grad', 'average_sqr_grad',
'momentum_step', 'SGD', 'rms_prop_step', 'RMSProp', 'step_stat', 'debias', 'adam_step', 'Adam', 'radam_step',
'RAdam', 'qhadam_step', 'QHAdam', 'larc_layer_lr', 'larc_step', 'Larc', 'lamb_step', 'Lamb', 'Lookahead',
'ranger', 'detuplify_pg', 'set_item_pg', 'OptimWrapper']
# %% ../nbs/12_optimizer.ipynb 6
class _BaseOptimizer():
"Common functionality between `Optimizer` and `OptimWrapper`"
def all_params(self,
n:slice|int=slice(None), # Extended slicing over the optimizer `param_lists`
with_grad:bool=False # Get all param tuples. If `True` select only those with a gradient
):
res = L((p,pg,self.state[p],hyper) for pg,hyper in zip(self.param_lists[n],self.hypers[n]) for p in pg)
return L(o for o in res if hasattr(o[0], 'grad') and o[0].grad is not None) if with_grad else res
def _set_require_grad(self,
rg:bool, # Requires grad: if `True` sets gradient for parameters, else uses state `state["force_train"]`
p:Tensor, # Parameters to set gradient
pg, # Param groups (unused but needed because unpack *o)
state: dict,
h # Hyperparameter (unused but needed because unpack *o)
):
p.requires_grad_(rg or state.get('force_train', False))
def freeze_to(self,
n:int # Freeze up to `n` layers
):
self.frozen_idx = n if n >= 0 else len(self.param_lists) + n
if self.frozen_idx >= len(self.param_lists):
warn(f"Freezing {self.frozen_idx} groups; model has {len(self.param_lists)}; whole model is frozen.")
for o in self.all_params(slice(n, None)): self._set_require_grad(True, *o)
for o in self.all_params(slice(None, n)): self._set_require_grad(False, *o)
def freeze(self):
assert(len(self.param_lists)>1)
self.freeze_to(-1)
def set_hypers(self, **kwargs): L(kwargs.items()).starmap(self.set_hyper)
def _set_hyper(self,
k, # Hyperparameter key
v # Hyperparameter value
):
for v_,h in zip(v, self.hypers): h[k] = v_
def set_hyper(self,
k, # Hyperparameter key or slice of keys
v # Hyperparameter value or slice of values
):
if isinstance(v, slice):
if v.start: v = even_mults(v.start, v.stop, len(self.param_lists))
else: v = [v.stop/10]*(len(self.param_lists)-1) + [v.stop]
v = L(v, use_list=None)
if len(v)==1: v = v*len(self.param_lists)
assert len(v) == len(self.hypers), f"Trying to set {len(v)} values for {k} but there are {len(self.param_lists)} parameter groups."
self._set_hyper(k, v)
def unfreeze(self): self.freeze_to(0)
@property
def param_groups(self): return [{**{'params': pg}, **hp} for pg,hp in zip(self.param_lists, self.hypers)]
@param_groups.setter
def param_groups(self,
v:dict # List of dicts to set `params` and other hyper parameters
):
for pg,v_ in zip(self.param_lists,v): pg = v_['params']
for hyper,v_ in zip(self.hypers,v):
for k,t in v_.items():
if k != 'params': hyper[k] = t
# %% ../nbs/12_optimizer.ipynb 8
def _update(
state:dict,
new=None # New values to update `state` dict
):
if new is None: return state
if isinstance(new, dict): state.update(new)
return state
# %% ../nbs/12_optimizer.ipynb 10
class Optimizer(_BaseOptimizer):
"Base optimizer class for the fastai library, updating `params` with `cbs`"
_keep_on_clear = ['force_train', 'do_wd']
def __init__(self,
params:Tensor|Iterable, # Model parameters
cbs:callable|MutableSequence, # `Optimizer` step callbacks
**defaults # Hyper parameters default values
):
if 'train_bn' in defaults.keys():
_ = defaults.pop('train_bn')
warn('Setting `train_bn` in `Optimizer` has no effect. Set `train_bn` on `Learner` init instead')
params = L(params)
self.cbs,self.state = L(cbs),defaultdict(dict)
defaults = merge(*self.cbs.attrgot('defaults'), defaults)
self.param_lists = L(L(p) for p in params) if isinstance(params[0], (L,list)) else L([params])
self.hypers = L({} for _ in range_of(self.param_lists))
self.set_hypers(**defaults)
self.frozen_idx = 0
def zero_grad(self):
for p,*_ in self.all_params(with_grad=True):
p.grad.detach_()
p.grad.zero_()
def step(self, closure=None):
if closure is not None: raise NotImplementedError("fastai optimizers currently do not support closure")
for p,pg,state,hyper in self.all_params(with_grad=True):
for cb in self.cbs: state = _update(state, cb(p, **{**state, **hyper}))
self.state[p] = state
def clear_state(self):
for p,pg,state,hyper in self.all_params():
self.state[p] = {k: state[k] for k in self._keep_on_clear if k in state}
def state_dict(self):
state = [self.state[p] for p,*_ in self.all_params()]
return {'state': state, 'hypers': self.hypers}
def load_state_dict(self,
sd:dict # State dict with `hypers` and `state` to load on the optimizer
):
assert len(sd["hypers"]) == len(self.param_lists)
assert len(sd["state"]) == sum([len(pg) for pg in self.param_lists])
self.hypers = sd['hypers']
self.state = {p: s for p,s in zip(self.all_params().itemgot(0), sd['state'])}
# %% ../nbs/12_optimizer.ipynb 21
def sgd_step(p, lr, **kwargs):
p.data.add_(p.grad.data, alpha=-lr)
# %% ../nbs/12_optimizer.ipynb 24
def weight_decay(p, lr, wd, do_wd=True, **kwargs):
"Weight decay as decaying `p` with `lr*wd`"
if do_wd and wd!=0: p.data.mul_(1 - lr*wd)
weight_decay.defaults = dict(wd=0.)
# %% ../nbs/12_optimizer.ipynb 26
def l2_reg(p, lr, wd, do_wd=True, **kwargs):
"L2 regularization as adding `wd*p` to `p.grad`"
if do_wd and wd!=0: p.grad.data.add_(p.data, alpha=wd)
l2_reg.defaults = dict(wd=0.)
# %% ../nbs/12_optimizer.ipynb 41
def average_grad(p, mom, dampening=False, grad_avg=None, **kwargs):
"Keeps track of the avg grads of `p` in `state` with `mom`."
if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data)
damp = 1-mom if dampening else 1.
grad_avg.mul_(mom).add_(p.grad.data, alpha=damp)
return {'grad_avg': grad_avg}
average_grad.defaults = dict(mom=0.9)
# %% ../nbs/12_optimizer.ipynb 44
def average_sqr_grad(p, sqr_mom, dampening=True, sqr_avg=None, **kwargs):
if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)
damp = 1-sqr_mom if dampening else 1.
sqr_avg.mul_(sqr_mom).addcmul_(p.grad.data, p.grad.data, value=damp)
return {'sqr_avg': sqr_avg}
average_sqr_grad.defaults = dict(sqr_mom=0.99)
# %% ../nbs/12_optimizer.ipynb 62
def momentum_step(p, lr, grad_avg, **kwargs):
"Step for SGD with momentum with `lr`"
p.data.add_(grad_avg, alpha=-lr)
# %% ../nbs/12_optimizer.ipynb 63
def SGD(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0., # Gradient moving average (β1) coefficient
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization (SGD)
) -> Optimizer:
"A SGD `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
if mom != 0: cbs.append(average_grad)
cbs.append(sgd_step if mom==0 else momentum_step)
return Optimizer(params, cbs, lr=lr, mom=mom, wd=wd)
# %% ../nbs/12_optimizer.ipynb 70
def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs):
"Step for RMSProp with momentum with `lr`"
denom = sqr_avg.sqrt().add_(eps)
p.data.addcdiv_((grad_avg if grad_avg is not None else p.grad), denom, value=-lr)
rms_prop_step.defaults = dict(eps=1e-8)
# %% ../nbs/12_optimizer.ipynb 71
def RMSProp(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0., # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-8, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization (RMSProp)
) -> Optimizer:
"A RMSProp `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += ([average_sqr_grad] if mom==0. else [average_grad, average_sqr_grad])
cbs.append(rms_prop_step)
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, wd=wd)
# %% ../nbs/12_optimizer.ipynb 76
def step_stat(p, step=0, **kwargs):
"Register the number of steps done in `state` for `p`"
step += 1
return {'step' : step}
# %% ../nbs/12_optimizer.ipynb 78
def debias(mom, damp, step): return damp * (1 - mom**step) / (1-mom)
# %% ../nbs/12_optimizer.ipynb 79
def adam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs):
"Step for Adam with `lr` on `p`"
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
p.data.addcdiv_(grad_avg, (sqr_avg/debias2).sqrt() + eps, value = -lr / debias1)
return p
adam_step._defaults = dict(eps=1e-5)
# %% ../nbs/12_optimizer.ipynb 80
def Adam(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-5, # Added for numerical stability
wd:Real=0.01, # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay (AdamW) or L2 regularization (Adam)
) -> Optimizer:
"A Adam/AdamW `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, adam_step]
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 85
def radam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, beta, **kwargs):
"Step for RAdam with `lr` on `p`"
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
r_inf = 2/(1-sqr_mom) - 1
r = r_inf - 2*step*sqr_mom**step/(1-sqr_mom**step)
if r > 5:
v = math.sqrt(((r-4) * (r-2) * r_inf)/((r_inf-4)*(r_inf-2)*r))
denom = (sqr_avg/debias2).sqrt()
if eps: denom += eps
if beta: denom = F.softplus(denom, beta)
p.data.addcdiv_(grad_avg, denom, value = -lr*v / debias1)
else: p.data.add_(grad_avg, alpha=-lr / debias1)
return p
radam_step._defaults = dict(eps=1e-5)
# %% ../nbs/12_optimizer.ipynb 86
def RAdam(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-5, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
beta:float=0., # Set to enable SAdam
decouple_wd:bool=True # Apply true weight decay (RAdamW) or L2 regularization (RAdam)
) -> Optimizer:
"A RAdam/RAdamW `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, radam_step]
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd, beta=beta)
# %% ../nbs/12_optimizer.ipynb 92
def qhadam_step(p, lr, mom, sqr_mom, sqr_avg, nu_1, nu_2, step, grad_avg, eps, **kwargs):
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
p.data.addcdiv_(((1-nu_1) * p.grad.data) + (nu_1 * (grad_avg / debias1)),
(((1 - nu_2) * (p.grad.data)**2) + (nu_2 * (sqr_avg / debias2))).sqrt() + eps,
value = -lr)
return p
qhadam_step._defaults = dict(eps=1e-8)
# %% ../nbs/12_optimizer.ipynb 93
def QHAdam(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.999, # Gradient moving average (β1) coefficient
sqr_mom:float=0.999, # Gradient squared moving average (β2) coefficient
nu_1:float=0.7, # QH immediate discount factor
nu_2:float=1.0, # QH momentum discount factor
eps:float=1e-8, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True, # Apply true weight decay (QHAdamW) or L2 regularization (QHAdam)
) -> Optimizer:
"A QHAdam/QHAdamW `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), partial(average_sqr_grad, dampening=True), step_stat, qhadam_step]
return Optimizer(params, cbs, lr=lr, nu_1=nu_1, nu_2=nu_2 ,
mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 96
def larc_layer_lr(p, lr, trust_coeff, wd, eps, clip=True, **kwargs):
"Computes the local lr before weight decay is applied"
p_norm,g_norm = torch.norm(p.data),torch.norm(p.grad.data)
local_lr = lr*trust_coeff * (p_norm) / (g_norm + p_norm * wd + eps)
return {'local_lr': min(lr, local_lr) if clip else local_lr}
larc_layer_lr.defaults = dict(trust_coeff=0.02, wd=0., eps=1e-8)
# %% ../nbs/12_optimizer.ipynb 97
def larc_step(p, local_lr, grad_avg=None, **kwargs):
"Step for LARC `local_lr` on `p`"
p.data.add_(p.grad.data if grad_avg is None else grad_avg, alpha = -local_lr)
# %% ../nbs/12_optimizer.ipynb 98
def Larc(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
clip:bool=True, # LARC if clip=True, LARS if clip=False
trust_coeff:float=0.02, # Trust coeffiecnet for calculating layerwise LR
eps:float=1e-8, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization
) -> Optimizer:
"A LARC/LARS `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
if mom!=0.: cbs.append(average_grad)
cbs += [partial(larc_layer_lr, clip=clip), larc_step]
return Optimizer(params, cbs, lr=lr, mom=mom, trust_coeff=trust_coeff, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 103
def lamb_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs):
"Step for LAMB with `lr` on `p`"
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
r1 = p.data.pow(2).mean().sqrt()
step = (grad_avg/debias1) / ((sqr_avg/debias2).sqrt()+eps)
r2 = step.pow(2).mean().sqrt()
q = 1 if r1 == 0 or r2 == 0 else min(r1/r2,10)
p.data.add_(step, alpha = -lr * q)
lamb_step._defaults = dict(eps=1e-6, wd=0.)
# %% ../nbs/12_optimizer.ipynb 104
def Lamb(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-5, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization
) -> Optimizer:
"A LAMB `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, lamb_step]
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 109
class Lookahead(Optimizer, GetAttr):
"Wrap `opt` in a lookahead optimizer"
_default='opt'
def __init__(self,
opt:Optimizer, # `Optimizer` to wrap with Lookahead
k:int=6, # How often to conduct Lookahead step
alpha:float=0.5, # Slow weight moving average coefficient
):
store_attr('opt,k,alpha')
self._init_state()
def step(self, closure=None):
if closure is not None: raise NotImplementedError("fastai optimizers currently do not support closure")
if self.slow_weights is None: self._copy_weights()
self.opt.step()
self.count += 1
if self.count%self.k != 0: return
for slow_pg,fast_pg in zip(self.slow_weights,self.param_lists):
for slow_p,fast_p in zip(slow_pg,fast_pg):
slow_p.data.add_(fast_p.data-slow_p.data, alpha=self.alpha)
fast_p.data.copy_(slow_p.data)
def clear_state(self):
self.opt.clear_state()
self._init_state()
def state_dict(self):
state = self.opt.state_dict()
state.update({'count': self.count, 'slow_weights': self.slow_weights})
return state
def load_state_dict(self, sd):
self.count = sd.pop('count')
self.slow_weights = sd.pop('slow_weights')
self.opt.load_state_dict(sd)
def _init_state(self): self.count,self.slow_weights = 0,None
def _copy_weights(self): self.slow_weights = L(L(p.clone().detach() for p in pg) for pg in self.param_lists)
@property
def param_lists(self): return self.opt.param_lists
@param_lists.setter
def param_lists(self, v): self.opt.param_lists = v
# %% ../nbs/12_optimizer.ipynb 111
@delegates(RAdam)
def ranger(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.95, # Gradient moving average (β1) coefficient
wd:Real=0.01, # Optional weight decay (true or L2)
eps:float=1e-6, # Added for numerical stability
k:int=6, # How often to conduct Lookahead step
alpha:float=0.5, # Slow weight moving average coefficient
**kwargs
) -> Lookahead:
"Convenience method for `Lookahead` with `RAdam`"
return Lookahead(RAdam(params, lr=lr, mom=mom, wd=wd, eps=eps, **kwargs), k=k, alpha=alpha)
# %% ../nbs/12_optimizer.ipynb 114
def detuplify_pg(d):
res = {}
for k,v in d.items():
if k == 'params': continue
if is_listy(v): res.update(**{f'{k}__{i}': v_ for i,v_ in enumerate(v)})
else: res[k] = v
return res
# %% ../nbs/12_optimizer.ipynb 116
def set_item_pg(pg, k, v):
if '__' not in k: pg[k] = v
else:
name,idx = k.split('__')
pg[name] = tuple(v if i==int(idx) else pg[name][i] for i in range_of(pg[name]))
return pg
# %% ../nbs/12_optimizer.ipynb 118
pytorch_hp_map = {'momentum': 'mom', 'weight_decay': 'wd', 'alpha': 'sqr_mom', 'betas__0': 'mom',
'betas__1': 'sqr_mom'}
# %% ../nbs/12_optimizer.ipynb 119
def _convert_params(o:list) -> list:
splitter = []
for group in o:
if isinstance(group, dict): splitter.append(group)
else: splitter.append({'params':group})
return splitter
# %% ../nbs/12_optimizer.ipynb 120
class OptimWrapper(_BaseOptimizer, GetAttr):
"A wrapper class for existing PyTorch optimizers"
_xtra=['zero_grad', 'step', 'state_dict', 'load_state_dict']
_default='opt'
def __init__(self,
params:Tensor|Iterable=None, # Model parameters. Don't set if using a built optimizer
opt:callable|torch.optim.Optimizer=None, # A torch optimizer constructor, or an already built optimizer
hp_map:dict=None, # A dictionary converting PyTorch optimizer keys to fastai's `Optimizer` keys. Defaults to `pytorch_hp_map`
convert_groups:bool=True, # Convert parameter groups from splitter or pass unaltered to `opt`
**kwargs
):
if params is None and opt is None: raise ValueError("Both `params` and `opt` cannot be None.")
if callable(opt):
if convert_groups:
params = L(params)
convert_groups = isinstance(params[0], (L,list))
self.opt = opt(_convert_params(params), **kwargs) if convert_groups else opt(params, **kwargs)
else:
if params is not None: raise ValueError("Tried using both `params` and a built optimizer. Just pass in `opt`.")
self.opt = opt
if hp_map is None: hp_map = pytorch_hp_map
self.fwd_map = {k: hp_map[k] if k in hp_map else k for k in detuplify_pg(self.opt.param_groups[0]).keys()}
self.bwd_map = {v:k for k,v in self.fwd_map.items()}
self.state = defaultdict(dict, {})
self.frozen_idx = 0
@property
def hypers(self):
return [{self.fwd_map.get(k, k):v for k,v in detuplify_pg(pg).items() if k != 'params'} for pg in self.opt.param_groups]
def _set_hyper(self, k, v):
for pg,v_ in zip(self.opt.param_groups,v): pg = set_item_pg(pg, self.bwd_map[k], v_)
def clear_state(self): self.opt.state = defaultdict(dict, {})
@property
def param_lists(self): return [pg['params'] for pg in self.opt.param_groups]
@param_lists.setter
def param_lists(self, v):
for pg,v_ in zip(self.opt.param_groups,v): pg['params'] = v_
|