Spaces:
Runtime error
Runtime error
File size: 22,629 Bytes
a983ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/13b_metrics.ipynb.
# %% ../nbs/13b_metrics.ipynb 1
from __future__ import annotations
from .data.all import *
from .optimizer import *
from .learner import *
# %% auto 0
__all__ = ['rmse', 'exp_rmspe', 'perplexity', 'AccumMetric', 'skm_to_fastai', 'optim_metric', 'accuracy', 'error_rate',
'top_k_accuracy', 'APScoreBinary', 'BalancedAccuracy', 'BrierScore', 'CohenKappa', 'F1Score', 'FBeta',
'HammingLoss', 'Jaccard', 'Precision', 'Recall', 'RocAuc', 'RocAucBinary', 'MatthewsCorrCoef',
'accuracy_multi', 'APScoreMulti', 'BrierScoreMulti', 'F1ScoreMulti', 'FBetaMulti', 'HammingLossMulti',
'JaccardMulti', 'MatthewsCorrCoefMulti', 'PrecisionMulti', 'RecallMulti', 'RocAucMulti', 'mse', 'mae',
'msle', 'ExplainedVariance', 'R2Score', 'PearsonCorrCoef', 'SpearmanCorrCoef', 'foreground_acc', 'Dice',
'DiceMulti', 'JaccardCoeff', 'CorpusBLEUMetric', 'Perplexity', 'LossMetric', 'LossMetrics']
# %% ../nbs/13b_metrics.ipynb 7
import sklearn.metrics as skm
import scipy.stats as scs
# %% ../nbs/13b_metrics.ipynb 8
mk_class('ActivationType', **{o:o.lower() for o in ['No', 'Sigmoid', 'Softmax', 'BinarySoftmax']},
doc="All possible activation classes for `AccumMetric")
# %% ../nbs/13b_metrics.ipynb 9
class AccumMetric(Metric):
"Stores predictions and targets on CPU in accumulate to perform final calculations with `func`."
def __init__(self, func, dim_argmax=None, activation=ActivationType.No, thresh=None, to_np=False,
invert_arg=False, flatten=True, name=None, **kwargs):
store_attr('func,dim_argmax,activation,thresh,flatten')
self._name = ifnone(name, self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__)
self.to_np,self.invert_args,self.kwargs = to_np,invert_arg,kwargs
def reset(self):
"Clear all targs and preds"
self.targs,self.preds = [],[]
def accumulate(self, learn):
"Store targs and preds from `learn`, using activation function and argmax as appropriate"
pred = learn.pred
if self.activation in [ActivationType.Softmax, ActivationType.BinarySoftmax]:
pred = F.softmax(pred, dim=self.dim_argmax)
if self.activation == ActivationType.BinarySoftmax: pred = pred[:, -1]
elif self.activation == ActivationType.Sigmoid: pred = torch.sigmoid(pred)
elif self.dim_argmax: pred = pred.argmax(dim=self.dim_argmax)
if self.thresh: pred = (pred >= self.thresh)
self.accum_values(pred,learn.y,learn)
def accum_values(self, preds, targs,learn=None):
"Store targs and preds"
to_d = learn.to_detach if learn is not None else to_detach
preds,targs = to_d(preds),to_d(targs)
if self.flatten: preds,targs = flatten_check(preds,targs)
self.preds.append(preds)
self.targs.append(targs)
def __call__(self, preds, targs):
"Calculate metric on one batch of data"
self.reset()
self.accum_values(preds,targs)
return self.value
@property
def value(self):
"Value of the metric using accumulated preds and targs"
if len(self.preds) == 0: return
preds,targs = torch.cat(self.preds),torch.cat(self.targs)
if self.to_np: preds,targs = preds.numpy(),targs.numpy()
return self.func(targs, preds, **self.kwargs) if self.invert_args else self.func(preds, targs, **self.kwargs)
@property
def name(self): return self._name
@name.setter
def name(self, value): self._name = value
# %% ../nbs/13b_metrics.ipynb 15
def skm_to_fastai(func, is_class=True, thresh=None, axis=-1, activation=None, **kwargs):
"Convert `func` from sklearn.metrics to a fastai metric"
dim_argmax = axis if is_class and thresh is None else None
if activation is None:
activation = ActivationType.Sigmoid if (is_class and thresh is not None) else ActivationType.No
return AccumMetric(func, dim_argmax=dim_argmax, activation=activation, thresh=thresh,
to_np=True, invert_arg=True, **kwargs)
# %% ../nbs/13b_metrics.ipynb 21
def optim_metric(f, argname, bounds, tol=0.01, do_neg=True, get_x=False):
"Replace metric `f` with a version that optimizes argument `argname`"
def _f(preds, targs):
def minfunc(x):
kwargs = {argname:x}
res = f(preds, targs, **kwargs)
return -res if do_neg else res
optres = scipy.optimize.minimize_scalar(minfunc, bounds=bounds, method='bounded',
options={'xatol':0.01})
fun = -optres.fun if do_neg else optres.fun
return (fun,optres.x) if get_x else fun
_f.__name__ = f'opt_{f.__name__}'
return _f
# %% ../nbs/13b_metrics.ipynb 25
def accuracy(inp, targ, axis=-1):
"Compute accuracy with `targ` when `pred` is bs * n_classes"
pred,targ = flatten_check(inp.argmax(dim=axis), targ)
return (pred == targ).float().mean()
# %% ../nbs/13b_metrics.ipynb 28
def error_rate(inp, targ, axis=-1):
"1 - `accuracy`"
return 1 - accuracy(inp, targ, axis=axis)
# %% ../nbs/13b_metrics.ipynb 30
def top_k_accuracy(inp, targ, k=5, axis=-1):
"Computes the Top-k accuracy (`targ` is in the top `k` predictions of `inp`)"
inp = inp.topk(k=k, dim=axis)[1]
targ = targ.unsqueeze(dim=axis).expand_as(inp)
return (inp == targ).sum(dim=-1).float().mean()
# %% ../nbs/13b_metrics.ipynb 32
def APScoreBinary(axis=-1, average='macro', pos_label=1, sample_weight=None):
"Average Precision for single-label binary classification problems"
return skm_to_fastai(skm.average_precision_score, axis=axis, activation=ActivationType.BinarySoftmax,
average=average, pos_label=pos_label, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 34
def BalancedAccuracy(axis=-1, sample_weight=None, adjusted=False):
"Balanced Accuracy for single-label binary classification problems"
return skm_to_fastai(skm.balanced_accuracy_score, axis=axis,
sample_weight=sample_weight, adjusted=adjusted)
# %% ../nbs/13b_metrics.ipynb 36
def BrierScore(axis=-1, sample_weight=None, pos_label=None):
"Brier score for single-label classification problems"
return skm_to_fastai(skm.brier_score_loss, axis=axis,
sample_weight=sample_weight, pos_label=pos_label)
# %% ../nbs/13b_metrics.ipynb 38
def CohenKappa(axis=-1, labels=None, weights=None, sample_weight=None):
"Cohen kappa for single-label classification problems"
return skm_to_fastai(skm.cohen_kappa_score, axis=axis, labels=labels, weights=weights,
sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 40
def F1Score(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"F1 score for single-label classification problems"
return skm_to_fastai(skm.f1_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 42
def FBeta(beta, axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"FBeta score with `beta` for single-label classification problems"
return skm_to_fastai(skm.fbeta_score, axis=axis,
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 44
def HammingLoss(axis=-1, sample_weight=None):
"Hamming loss for single-label classification problems"
return skm_to_fastai(skm.hamming_loss, axis=axis,
sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 46
def Jaccard(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Jaccard score for single-label classification problems"
return skm_to_fastai(skm.jaccard_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 48
def Precision(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Precision for single-label classification problems"
return skm_to_fastai(skm.precision_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 50
def Recall(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None):
"Recall for single-label classification problems"
return skm_to_fastai(skm.recall_score, axis=axis,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 52
def RocAuc(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='ovr'):
"Area Under the Receiver Operating Characteristic Curve for single-label multiclass classification problems"
assert multi_class in ['ovr', 'ovo']
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.Softmax, flatten=False,
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class)
# %% ../nbs/13b_metrics.ipynb 54
def RocAucBinary(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='raise'):
"Area Under the Receiver Operating Characteristic Curve for single-label binary classification problems"
return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.BinarySoftmax,
average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class)
# %% ../nbs/13b_metrics.ipynb 56
def MatthewsCorrCoef(sample_weight=None, **kwargs):
"Matthews correlation coefficient for single-label classification problems"
return skm_to_fastai(skm.matthews_corrcoef, sample_weight=sample_weight, **kwargs)
# %% ../nbs/13b_metrics.ipynb 59
def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True):
"Compute accuracy when `inp` and `targ` are the same size."
inp,targ = flatten_check(inp,targ)
if sigmoid: inp = inp.sigmoid()
return ((inp>thresh)==targ.bool()).float().mean()
# %% ../nbs/13b_metrics.ipynb 62
def APScoreMulti(sigmoid=True, average='macro', pos_label=1, sample_weight=None):
"Average Precision for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.average_precision_score, activation=activation, flatten=False,
average=average, pos_label=pos_label, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 64
def BrierScoreMulti(thresh=0.5, sigmoid=True, sample_weight=None, pos_label=None):
"Brier score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.brier_score_loss, thresh=thresh, activation=activation, flatten=False,
sample_weight=sample_weight, pos_label=pos_label)
# %% ../nbs/13b_metrics.ipynb 66
def F1ScoreMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"F1 score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.f1_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 68
def FBetaMulti(beta, thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"FBeta score with `beta` for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.fbeta_score, thresh=thresh, activation=activation, flatten=False,
beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 70
def HammingLossMulti(thresh=0.5, sigmoid=True, labels=None, sample_weight=None):
"Hamming loss for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.hamming_loss, thresh=thresh, activation=activation, flatten=False,
sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 72
def JaccardMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Jaccard score for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.jaccard_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 74
def MatthewsCorrCoefMulti(thresh=0.5, sigmoid=True, sample_weight=None):
"Matthews correlation coefficient for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.matthews_corrcoef, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 76
def PrecisionMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Precision for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.precision_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 78
def RecallMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None):
"Recall for multi-label classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.recall_score, thresh=thresh, activation=activation, flatten=False,
labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 80
def RocAucMulti(sigmoid=True, average='macro', sample_weight=None, max_fpr=None):
"Area Under the Receiver Operating Characteristic Curve for multi-label binary classification problems"
activation = ActivationType.Sigmoid if sigmoid else ActivationType.No
return skm_to_fastai(skm.roc_auc_score, activation=activation, flatten=False,
average=average, sample_weight=sample_weight, max_fpr=max_fpr)
# %% ../nbs/13b_metrics.ipynb 84
def mse(inp,targ):
"Mean squared error between `inp` and `targ`."
return F.mse_loss(*flatten_check(inp,targ))
# %% ../nbs/13b_metrics.ipynb 86
def _rmse(inp, targ): return torch.sqrt(F.mse_loss(inp, targ))
rmse = AccumMetric(_rmse)
rmse.__doc__ = "Root mean squared error"
# %% ../nbs/13b_metrics.ipynb 89
def mae(inp,targ):
"Mean absolute error between `inp` and `targ`."
inp,targ = flatten_check(inp,targ)
return torch.abs(inp - targ).mean()
# %% ../nbs/13b_metrics.ipynb 91
def msle(inp, targ):
"Mean squared logarithmic error between `inp` and `targ`."
inp,targ = flatten_check(inp,targ)
return F.mse_loss(torch.log(1 + inp), torch.log(1 + targ))
# %% ../nbs/13b_metrics.ipynb 93
def _exp_rmspe(inp,targ):
inp,targ = torch.exp(inp),torch.exp(targ)
return torch.sqrt(((targ - inp)/targ).pow(2).mean())
exp_rmspe = AccumMetric(_exp_rmspe)
exp_rmspe.__doc__ = "Root mean square percentage error of the exponential of predictions and targets"
# %% ../nbs/13b_metrics.ipynb 96
def ExplainedVariance(sample_weight=None):
"Explained variance between predictions and targets"
return skm_to_fastai(skm.explained_variance_score, is_class=False, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 98
def R2Score(sample_weight=None):
"R2 score between predictions and targets"
return skm_to_fastai(skm.r2_score, is_class=False, sample_weight=sample_weight)
# %% ../nbs/13b_metrics.ipynb 100
@delegates(AccumMetric)
def PearsonCorrCoef(dim_argmax=None, **kwargs):
"Pearson correlation coefficient for regression problem"
def pearsonr(x,y): return scs.pearsonr(x,y)[0]
return AccumMetric(pearsonr, invert_arg=False, dim_argmax=dim_argmax, **kwargs)
# %% ../nbs/13b_metrics.ipynb 103
@delegates(AccumMetric)
def SpearmanCorrCoef(dim_argmax=None, axis=0, nan_policy='propagate', **kwargs):
"Spearman correlation coefficient for regression problem"
def spearmanr(a,b=None,**kwargs): return scs.spearmanr(a,b,**kwargs)[0]
return AccumMetric(partial(spearmanr, axis=axis, nan_policy=nan_policy),
invert_arg=False, dim_argmax=dim_argmax, **kwargs)
# %% ../nbs/13b_metrics.ipynb 111
def foreground_acc(inp, targ, bkg_idx=0, axis=1):
"Computes non-background accuracy for multiclass segmentation"
targ = cast(targ.squeeze(1), TensorBase)
mask = targ != bkg_idx
return (inp.argmax(dim=axis)[mask]==targ[mask]).float().mean()
# %% ../nbs/13b_metrics.ipynb 113
class Dice(Metric):
"Dice coefficient metric for binary target in segmentation"
def __init__(self, axis=1): self.axis = axis
def reset(self): self.inter,self.union = 0,0
def accumulate(self, learn):
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y)
self.inter += (pred*targ).float().sum().item()
self.union += (pred+targ).float().sum().item()
@property
def value(self): return 2. * self.inter/self.union if self.union > 0 else None
# %% ../nbs/13b_metrics.ipynb 115
class DiceMulti(Metric):
"Averaged Dice metric (Macro F1) for multiclass target in segmentation"
def __init__(self, axis=1): self.axis = axis
def reset(self): self.inter,self.union = {},{}
def accumulate(self, learn):
pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y)
for c in range(learn.pred.shape[self.axis]):
p = torch.where(pred == c, 1, 0)
t = torch.where(targ == c, 1, 0)
c_inter = (p*t).float().sum().item()
c_union = (p+t).float().sum().item()
if c in self.inter:
self.inter[c] += c_inter
self.union[c] += c_union
else:
self.inter[c] = c_inter
self.union[c] = c_union
@property
def value(self):
binary_dice_scores = np.array([])
for c in self.inter:
binary_dice_scores = np.append(binary_dice_scores, 2.*self.inter[c]/self.union[c] if self.union[c] > 0 else np.nan)
return np.nanmean(binary_dice_scores)
# %% ../nbs/13b_metrics.ipynb 118
class JaccardCoeff(Dice):
"Implementation of the Jaccard coefficient that is lighter in RAM"
@property
def value(self): return self.inter/(self.union-self.inter) if self.union > 0 else None
# %% ../nbs/13b_metrics.ipynb 121
class CorpusBLEUMetric(Metric):
def __init__(self, vocab_sz=5000, axis=-1):
"BLEU Metric calculated over the validation corpus"
self.metric_name = 'CorpusBLEU'
self.axis, self.vocab_sz = axis, vocab_sz
self.pred_len,self.targ_len,self.samp_idx,self.corrects,self.counts, = 0,0,0,[0]*4,[0]*4
def reset(self):
self.pred_len,self.targ_len,self.corrects,self.counts = 0,0,[0]*4,[0]*4
class NGram():
def __init__(self, ngram, max_n=5000): self.ngram,self.max_n = ngram,max_n
def __eq__(self, other):
if len(self.ngram) != len(other.ngram): return False
return np.all(np.array(self.ngram) == np.array(other.ngram))
def __hash__(self): return int(sum([o * self.max_n**i for i,o in enumerate(self.ngram)]))
def get_grams(self, x, n, max_n=5000):
return x if n==1 else [self.NGram(x[i:i+n], max_n=max_n) for i in range(len(x)-n+1)]
def get_correct_ngrams(self, pred, targ, n, max_n=5000):
pred_grams,targ_grams = self.get_grams(pred, n, max_n=max_n),self.get_grams(targ, n, max_n=max_n)
pred_cnt,targ_cnt = Counter(pred_grams),Counter(targ_grams)
return sum([min(c, targ_cnt[g]) for g,c in pred_cnt.items()]),len(pred_grams)
def accumulate(self, learn):
if learn.training: return None
else:
last_output = learn.pred.argmax(dim=self.axis)
last_target = learn.y
for pred,targ in zip(last_output.cpu().numpy(),last_target.cpu().numpy()):
self.pred_len += len(pred)
self.targ_len += len(targ)
smooth_mteval = 1
for i in range(4):
c,t = self.get_correct_ngrams(pred, targ, i+1, max_n=self.vocab_sz)
if c == 0:
smooth_mteval *= 2
c = 1 / smooth_mteval # exp smoothing, method 3 from http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
self.corrects[i] += c
self.counts[i] += t
@property
def value(self):
if self.counts == 0: return None
elif max(self.corrects) == 0: return 0.0
else:
precs = [c/t for c,t in zip(self.corrects,self.counts)]
len_penalty = math.exp(1 - self.targ_len/self.pred_len) if self.pred_len < self.targ_len else 1
return len_penalty * ((precs[0]*precs[1]*precs[2]*precs[3]) ** 0.25)
# %% ../nbs/13b_metrics.ipynb 124
class Perplexity(AvgLoss):
"Perplexity (exponential of cross-entropy loss) for Language Models"
@property
def value(self): return torch.exp(self.total/self.count) if self.count != 0 else None
@property
def name(self): return "perplexity"
perplexity = Perplexity()
# %% ../nbs/13b_metrics.ipynb 127
class LossMetric(AvgMetric):
"Create a metric from `loss_func.attr` named `nm`"
def __init__(self, attr, nm=None): store_attr('attr,nm')
def accumulate(self, learn):
bs = find_bs(learn.yb)
self.total += learn.to_detach(getattr(learn.loss_func, self.attr, 0))*bs
self.count += bs
@property
def name(self): return self.attr if self.nm is None else self.nm
# %% ../nbs/13b_metrics.ipynb 128
def LossMetrics(attrs, nms=None):
"List of `LossMetric` for each of `attrs` and `nms`"
if isinstance(attrs, str): attrs = attrs.split(',')
nms = attrs if nms is None else nms.split(',') if isinstance(nms, str) else nms
return [LossMetric(a, n) for a,n in zip(attrs,nms)]
|