Spaces:
Build error
Build error
File size: 11,450 Bytes
a983ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/01a_losses.ipynb.
# %% ../nbs/01a_losses.ipynb 2
from __future__ import annotations
from .imports import *
from .torch_imports import *
from .torch_core import *
from .layers import *
# %% auto 0
__all__ = ['BaseLoss', 'CrossEntropyLossFlat', 'FocalLoss', 'FocalLossFlat', 'BCEWithLogitsLossFlat', 'BCELossFlat',
'MSELossFlat', 'L1LossFlat', 'LabelSmoothingCrossEntropy', 'LabelSmoothingCrossEntropyFlat', 'DiceLoss']
# %% ../nbs/01a_losses.ipynb 5
class BaseLoss():
"Same as `loss_cls`, but flattens input and target."
activation=decodes=noops
def __init__(self,
loss_cls, # Uninitialized PyTorch-compatible loss
*args,
axis:int=-1, # Class axis
flatten:bool=True, # Flatten `inp` and `targ` before calculating loss
floatify:bool=False, # Convert `targ` to `float`
is_2d:bool=True, # Whether `flatten` keeps one or two channels when applied
**kwargs
):
store_attr("axis,flatten,floatify,is_2d")
self.func = loss_cls(*args,**kwargs)
functools.update_wrapper(self, self.func)
def __repr__(self) -> str: return f"FlattenedLoss of {self.func}"
@property
def reduction(self) -> str: return self.func.reduction
@reduction.setter
def reduction(self, v:str):
"Sets the reduction style (typically 'mean', 'sum', or 'none')"
self.func.reduction = v
def _contiguous(self, x:Tensor) -> TensorBase:
"Move `self.axis` to the last dimension and ensure tensor is contigous for `Tensor` otherwise just return"
return TensorBase(x.transpose(self.axis,-1).contiguous()) if isinstance(x,torch.Tensor) else x
def __call__(self,
inp:Tensor|MutableSequence, # Predictions from a `Learner`
targ:Tensor|MutableSequence, # Actual y label
**kwargs
) -> TensorBase: # `loss_cls` calculated on `inp` and `targ`
inp,targ = map(self._contiguous, (inp,targ))
if self.floatify and targ.dtype!=torch.float16: targ = targ.float()
if targ.dtype in [torch.int8, torch.int16, torch.int32]: targ = targ.long()
if self.flatten: inp = inp.view(-1,inp.shape[-1]) if self.is_2d else inp.view(-1)
return self.func.__call__(inp, targ.view(-1) if self.flatten else targ, **kwargs)
def to(self, device:torch.device):
"Move the loss function to a specified `device`"
if isinstance(self.func, nn.Module): self.func.to(device)
# %% ../nbs/01a_losses.ipynb 8
@delegates()
class CrossEntropyLossFlat(BaseLoss):
"Same as `nn.CrossEntropyLoss`, but flattens input and target."
y_int = True # y interpolation
@use_kwargs_dict(keep=True, weight=None, ignore_index=-100, reduction='mean')
def __init__(self,
*args,
axis:int=-1, # Class axis
**kwargs
):
super().__init__(nn.CrossEntropyLoss, *args, axis=axis, **kwargs)
def decodes(self, x:Tensor) -> Tensor:
"Converts model output to target format"
return x.argmax(dim=self.axis)
def activation(self, x:Tensor) -> Tensor:
"`nn.CrossEntropyLoss`'s fused activation function applied to model output"
return F.softmax(x, dim=self.axis)
# %% ../nbs/01a_losses.ipynb 13
class FocalLoss(Module):
y_int=True # y interpolation
def __init__(self,
gamma:float=2.0, # Focusing parameter. Higher values down-weight easy examples' contribution to loss
weight:Tensor=None, # Manual rescaling weight given to each class
reduction:str='mean' # PyTorch reduction to apply to the output
):
"Applies Focal Loss: https://arxiv.org/pdf/1708.02002.pdf"
store_attr()
def forward(self, inp:Tensor, targ:Tensor) -> Tensor:
"Applies focal loss based on https://arxiv.org/pdf/1708.02002.pdf"
ce_loss = F.cross_entropy(inp, targ, weight=self.weight, reduction="none")
p_t = torch.exp(-ce_loss)
loss = (1 - p_t)**self.gamma * ce_loss
if self.reduction == "mean":
loss = loss.mean()
elif self.reduction == "sum":
loss = loss.sum()
return loss
class FocalLossFlat(BaseLoss):
"""
Same as CrossEntropyLossFlat but with focal paramter, `gamma`. Focal loss is introduced by Lin et al.
https://arxiv.org/pdf/1708.02002.pdf. Note the class weighting factor in the paper, alpha, can be
implemented through pytorch `weight` argument passed through to F.cross_entropy.
"""
y_int = True # y interpolation
@use_kwargs_dict(keep=True, weight=None, reduction='mean')
def __init__(self,
*args,
gamma:float=2.0, # Focusing parameter. Higher values down-weight easy examples' contribution to loss
axis:int=-1, # Class axis
**kwargs
):
super().__init__(FocalLoss, *args, gamma=gamma, axis=axis, **kwargs)
def decodes(self, x:Tensor) -> Tensor:
"Converts model output to target format"
return x.argmax(dim=self.axis)
def activation(self, x:Tensor) -> Tensor:
"`F.cross_entropy`'s fused activation function applied to model output"
return F.softmax(x, dim=self.axis)
# %% ../nbs/01a_losses.ipynb 16
@delegates()
class BCEWithLogitsLossFlat(BaseLoss):
"Same as `nn.BCEWithLogitsLoss`, but flattens input and target."
@use_kwargs_dict(keep=True, weight=None, reduction='mean', pos_weight=None)
def __init__(self,
*args,
axis:int=-1, # Class axis
floatify:bool=True, # Convert `targ` to `float`
thresh:float=0.5, # The threshold on which to predict
**kwargs
):
if kwargs.get('pos_weight', None) is not None and kwargs.get('flatten', None) is True:
raise ValueError("`flatten` must be False when using `pos_weight` to avoid a RuntimeError due to shape mismatch")
if kwargs.get('pos_weight', None) is not None: kwargs['flatten'] = False
super().__init__(nn.BCEWithLogitsLoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
self.thresh = thresh
def decodes(self, x:Tensor) -> Tensor:
"Converts model output to target format"
return x>self.thresh
def activation(self, x:Tensor) -> Tensor:
"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output"
return torch.sigmoid(x)
# %% ../nbs/01a_losses.ipynb 18
@use_kwargs_dict(weight=None, reduction='mean')
def BCELossFlat(
*args,
axis:int=-1, # Class axis
floatify:bool=True, # Convert `targ` to `float`
**kwargs
):
"Same as `nn.BCELoss`, but flattens input and target."
return BaseLoss(nn.BCELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
# %% ../nbs/01a_losses.ipynb 20
@use_kwargs_dict(reduction='mean')
def MSELossFlat(
*args,
axis:int=-1, # Class axis
floatify:bool=True, # Convert `targ` to `float`
**kwargs
):
"Same as `nn.MSELoss`, but flattens input and target."
return BaseLoss(nn.MSELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
# %% ../nbs/01a_losses.ipynb 23
@use_kwargs_dict(reduction='mean')
def L1LossFlat(
*args,
axis=-1, # Class axis
floatify=True, # Convert `targ` to `float`
**kwargs
):
"Same as `nn.L1Loss`, but flattens input and target."
return BaseLoss(nn.L1Loss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
# %% ../nbs/01a_losses.ipynb 24
class LabelSmoothingCrossEntropy(Module):
y_int = True # y interpolation
def __init__(self,
eps:float=0.1, # The weight for the interpolation formula
weight:Tensor=None, # Manual rescaling weight given to each class passed to `F.nll_loss`
reduction:str='mean' # PyTorch reduction to apply to the output
):
store_attr()
def forward(self, output:Tensor, target:Tensor) -> Tensor:
"Apply `F.log_softmax` on output then blend the loss/num_classes(`c`) with the `F.nll_loss`"
c = output.size()[1]
log_preds = F.log_softmax(output, dim=1)
if self.reduction=='sum': loss = -log_preds.sum()
else:
loss = -log_preds.sum(dim=1) #We divide by that size at the return line so sum and not mean
if self.reduction=='mean': loss = loss.mean()
return loss*self.eps/c + (1-self.eps) * F.nll_loss(log_preds, target.long(), weight=self.weight, reduction=self.reduction)
def activation(self, out:Tensor) -> Tensor:
"`F.log_softmax`'s fused activation function applied to model output"
return F.softmax(out, dim=-1)
def decodes(self, out:Tensor) -> Tensor:
"Converts model output to target format"
return out.argmax(dim=-1)
# %% ../nbs/01a_losses.ipynb 27
@delegates()
class LabelSmoothingCrossEntropyFlat(BaseLoss):
"Same as `LabelSmoothingCrossEntropy`, but flattens input and target."
y_int = True
@use_kwargs_dict(keep=True, eps=0.1, reduction='mean')
def __init__(self,
*args,
axis:int=-1, # Class axis
**kwargs
):
super().__init__(LabelSmoothingCrossEntropy, *args, axis=axis, **kwargs)
def activation(self, out:Tensor) -> Tensor:
"`LabelSmoothingCrossEntropy`'s fused activation function applied to model output"
return F.softmax(out, dim=-1)
def decodes(self, out:Tensor) -> Tensor:
"Converts model output to target format"
return out.argmax(dim=-1)
# %% ../nbs/01a_losses.ipynb 30
class DiceLoss:
"Dice loss for segmentation"
def __init__(self,
axis:int=1, # Class axis
smooth:float=1e-6, # Helps with numerical stabilities in the IoU division
reduction:str="sum", # PyTorch reduction to apply to the output
square_in_union:bool=False # Squares predictions to increase slope of gradients
):
store_attr()
def __call__(self, pred:Tensor, targ:Tensor) -> Tensor:
"One-hot encodes targ, then runs IoU calculation then takes 1-dice value"
targ = self._one_hot(targ, pred.shape[self.axis])
pred, targ = TensorBase(pred), TensorBase(targ)
assert pred.shape == targ.shape, 'input and target dimensions differ, DiceLoss expects non one-hot targs'
pred = self.activation(pred)
sum_dims = list(range(2, len(pred.shape)))
inter = torch.sum(pred*targ, dim=sum_dims)
union = (torch.sum(pred**2+targ, dim=sum_dims) if self.square_in_union
else torch.sum(pred+targ, dim=sum_dims))
dice_score = (2. * inter + self.smooth)/(union + self.smooth)
loss = 1- dice_score
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
@staticmethod
def _one_hot(
x:Tensor, # Non one-hot encoded targs
classes:int, # The number of classes
axis:int=1 # The axis to stack for encoding (class dimension)
) -> Tensor:
"Creates one binary mask per class"
return torch.stack([torch.where(x==c, 1, 0) for c in range(classes)], axis=axis)
def activation(self, x:Tensor) -> Tensor:
"Activation function applied to model output"
return F.softmax(x, dim=self.axis)
def decodes(self, x:Tensor) -> Tensor:
"Converts model output to target format"
return x.argmax(dim=self.axis)
|