Spaces:
Runtime error
Runtime error
File size: 9,784 Bytes
a983ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/20a_distributed.ipynb.
# %% ../nbs/20a_distributed.ipynb 2
from __future__ import annotations
from .basics import *
from .callback.progress import ProgressCallback
from torch.nn.parallel import DistributedDataParallel, DataParallel
from .data.load import _FakeLoader,_loaders
from .optimizer import OptimWrapper
try: from accelerate import Accelerator
except ModuleNotFoundError: pass
# %% auto 0
__all__ = ['ParallelTrainer', 'setup_distrib', 'teardown_distrib', 'DistributedDL', 'DistributedTrainer', 'rank0_first']
# %% ../nbs/20a_distributed.ipynb 6
@patch
def reset(self: DataParallel):
"Patch required `reset` call into `DataParallel`"
if hasattr(self.module, 'reset'): self.module.reset()
# %% ../nbs/20a_distributed.ipynb 7
class ParallelTrainer(Callback):
"Wrap a model `DataParallel` automatically"
run_after,run_before = TrainEvalCallback,Recorder
def __init__(self, device_ids): self.device_ids = device_ids
def before_fit(self): self.learn.model = DataParallel(self.learn.model, device_ids=self.device_ids)
def after_fit(self): self.learn.model = self.learn.model.module
# %% ../nbs/20a_distributed.ipynb 8
@patch
def to_parallel(self: Learner, device_ids=None):
"Add `ParallelTrainer` callback to a `Learner`"
self.add_cb(ParallelTrainer(device_ids))
return self
# %% ../nbs/20a_distributed.ipynb 9
@patch
def detach_parallel(self: Learner):
"Remove `ParallelTrainer` callback from a Learner"
self.remove_cb(ParallelTrainer)
return self
# %% ../nbs/20a_distributed.ipynb 10
@patch
@contextmanager
def parallel_ctx(self: Learner, device_ids=None):
"A context manager to adapt a learner to train in data parallel mode."
try:
self.to_parallel(device_ids)
yield self
finally: self.detach_parallel()
# %% ../nbs/20a_distributed.ipynb 13
@patch
def reset(self: DistributedDataParallel):
"Patch required `reset` call into `DistributedDataParallel`"
if hasattr(self.module, 'reset'): self.module.reset()
# %% ../nbs/20a_distributed.ipynb 14
def setup_distrib(gpu=None):
"Setup this process to participate in distributed training"
if gpu is None: return gpu
gpu = int(gpu)
torch.cuda.set_device(int(gpu))
if num_distrib() > 0: torch.distributed.init_process_group(backend='nccl', init_method='env://')
return gpu
# %% ../nbs/20a_distributed.ipynb 15
def teardown_distrib():
"Free distributed training resources"
if torch.distributed.is_initialized(): torch.distributed.destroy_process_group()
# %% ../nbs/20a_distributed.ipynb 17
def _round_to_multiple(number,multiple): return int(math.ceil(number/multiple)*multiple)
# %% ../nbs/20a_distributed.ipynb 18
class DistributedDL(TfmdDL):
"A `TfmdDL` which splits a batch into equal size pieces for each worker"
def __init__(self,dl,rank=None,world_size=None):
if rank is None: rank=rank_distrib()
if world_size is None: world_size=num_distrib()
store_attr()
if type(dl) == torch.utils.data.DataLoader:
shuffle = True if eq(type(dl.sampler), torch.utils.data.RandomSampler) else False
self.dl = DataLoader(dataset=dl.dataset, bs=dl.batch_size, num_workers=dl.num_workers, \
pin_memory=dl.pin_memory, timeout=dl.timeout, shuffle=shuffle, drop_last=dl.drop_last, persistent_workers=dl.persistent_workers)
self.bs,self.device,self.drop_last,self.dataset,fake,self.num_workers,self.offs,self.pin_memory = \
attrgetter('bs','device','drop_last','dataset','fake_l','num_workers','offs','pin_memory')(self.dl)
self.fake_l = _FakeLoader(self, fake.pin_memory, fake.num_workers, fake.timeout,
persistent_workers=fake.persistent_workers,
pin_memory_device=fake.pin_memory_device)
def _broadcast(self,t,rank):
"Broadcasts t from rank `rank` to all other ranks. Returns t so t is same for all ranks after call."
t = LongTensor(t).cuda() # nccl only works with cuda tensors
torch.distributed.broadcast(t,rank)
return t.cpu().tolist()
def _to_detach(self,b,cpu=True,gather=True): return to_detach(b,cpu,gather) # member func so we can override for test
def __len__(self): return _round_to_multiple(len(self.dl),self.world_size)//self.world_size
def get_idxs(self):
idxs = list(self.dl.get_idxs()) # compute get_idxs in all ranks (we'll only use rank 0 but size must be consistent)
idxs = self._broadcast(idxs,0) # broadcast and receive it from rank 0 to all
self.n = len(idxs) # we assumed n was dl.n but we really care about number of idxs
# add extra samples to make it evenly divisible
self.n_padded = _round_to_multiple(self.n,self.world_size)
idxs += (idxs * (self.n_padded//self.n))[:self.n_padded-self.n] # idx needs to be repeated when n_padded>>n
# slice padded idxs so that each rank gets self.n_padded//self.world_size tensors
return idxs[self.rank*self.n_padded//self.world_size:(self.rank+1)*self.n_padded//self.world_size]
def before_iter(self):
self.i = 0
self.dl.before_iter()
def randomize(self): self.dl.randomize()
def after_batch(self,b):
self.i += find_bs(b)
return self.dl.after_batch(b)
def after_iter(self): self.dl.after_iter()
def create_batches(self,samps): return self.dl.create_batches(samps)
def to_detach(self,b, cpu=True, gather=True):
b = self._to_detach(b, cpu, gather)
def _inner(b):
if b.ndim>0:
# for each rank, compute overflow of read idxs vs self.n and accumulate them to unpad totals after gathering
n = sum([min(0,max(-len(b)//self.world_size,
self.n-(self.i+r*self.n_padded//self.world_size))) for r in range(self.world_size)])
b = b[:n or None]
return b
return apply(_inner,b) if gather and all(hasattr(self,o) for o in ('i','n','n_padded')) else b
# %% ../nbs/20a_distributed.ipynb 29
_hidden_params = ["mixed_precision", "fp16", "log_with", "logging_dir", "step_scheduler_with_optimizer"]
# %% ../nbs/20a_distributed.ipynb 30
class DistributedTrainer(Callback):
"Wrap `model` in `DistributedDataParallel` and `dls` in `DistributedDL`"
order = 11
@delegates(Accelerator, but=_hidden_params)
def __init__(self,
sync_bn=True, # Whether to replace all batch norm with `nn.SyncBatchNorm`
**kwargs
):
store_attr()
self.accelerator = Accelerator(**kwargs)
def before_fit(self):
self.learn.model = self.accelerator.prepare(
nn.SyncBatchNorm.convert_sync_batchnorm(self.model) if self.sync_bn else self.model
)
self.old_dls = list(self.dls)
self.learn.dls.loaders = [self._wrap_dl(dl) for dl in self.dls]
if rank_distrib(): self.learn.logger=noop
def _wrap_dl(self, dl): return dl if isinstance(dl,DistributedDL) else DistributedDL(dl)
def _backward(self): self.accelerator.backward(self.learn.loss_grad)
def before_train(self): self.learn.dl = self._wrap_dl(self.learn.dl)
def before_validate(self): self.learn.dl = self._wrap_dl(self.learn.dl)
def after_fit(self): self.learn.model,self.learn.dls.loaders = self.learn.model.module,self.old_dls
# %% ../nbs/20a_distributed.ipynb 31
@patch
@delegates(Accelerator, but=_hidden_params)
def to_distributed(self: Learner,
sync_bn=True, # Whether to replace all batch norm with `nn.SyncBatchNorm`
**kwargs
):
"Add `AcceleratedTrainer` to a learner, and configures an Accelerator"
self.add_cb(DistributedTrainer(sync_bn, **kwargs))
if rank_distrib(): self.remove_cb(ProgressCallback)
return self
# %% ../nbs/20a_distributed.ipynb 32
@patch
def detach_distributed(self: Learner):
"Remove `DistributedTrainer` from a learner"
if num_distrib() <=1: return self
self.remove_cb(DistributedTrainer)
if rank_distrib() and not hasattr(self, 'progress'): self.add_cb(ProgressCallback())
return self
# %% ../nbs/20a_distributed.ipynb 34
@patch
@contextmanager
@delegates(Accelerator, but=_hidden_params)
def distrib_ctx(self: Learner,
sync_bn=True, # Whether to replace all batch norm with `nn.SyncBatchNorm`
in_notebook=False, # Whether we are launching from a notebook or not
**kwargs
):
"A context manager to adapt a learner to train in distributed data parallel mode."
try: import accelerate
except ImportError as e:
e.args = ["Accelerate is required. Install with `pip install accelerate`"]
raise
# Adapt self to DistributedDataParallel, yield, and cleanup afterwards.
cleanup_dpg = False
try:
if in_notebook:
cuda_id = rank_distrib()
if not torch.distributed.is_initialized():
setup_distrib(cuda_id)
cleanup_dpg = torch.distributed.is_initialized()
if not rank_distrib(): print("Training Learner...")
if num_distrib(): self.to_distributed(sync_bn, **kwargs)
yield self
finally:
self.detach_distributed()
if cleanup_dpg: teardown_distrib()
# %% ../nbs/20a_distributed.ipynb 36
def rank0_first(func, *args, **kwargs):
"Execute `func` in the Rank-0 process first, then in other ranks in parallel."
if args or kwargs: func = partial(func, *args, **kwargs)
dummy_l = Learner(DataLoaders(device='cpu'), nn.Linear(1,1), loss_func=lambda: 0)
with dummy_l.distrib_ctx():
if not rank_distrib(): res = func()
distrib_barrier()
if rank_distrib(): res = func()
return res
|