Spaces:
Runtime error
Runtime error
File size: 7,429 Bytes
09caaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import pandas as pd
import os
from huggingface_hub import InferenceClient, login
from transformers import AutoTokenizer
import evaluate
bleu = evaluate.load("bleu")
HF_TOKEN = os.environ.get("HF_TOKEN", None)
print(HF_TOKEN)
client = InferenceClient(model="bigcode/starcoder", token=HF_TOKEN)
login(token=HF_TOKEN)
checkpoint = "bigcode/starcoder"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_auth_token=True)
df = pd.read_csv("samples.csv")
sample_df = df.loc[~df.prediction_50.isna()]
description = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>StarCoder Memorization Verifier"
high_bleu_examples = {
"Example 1": """from django.contrib import admin
from .models import SearchResult
# Register your models here.
class SearchResultAdmin(admin.ModelAdmin):
fields = ["query", "heading", "url", "text"]
admin.site.register(SearchResult, SearchResultAdmin)""",
"Example 2": """class Solution:
def finalPrices(self, prices: List[int]) -> List[int]:
res = []
for i in range(len(prices)):
for j in range(i+1,len(prices)):
if prices[j]<=prices[i]:
res.append(prices[i]-prices[j])
break
if j==len(prices)-1:
res.append(prices[i])
res.append(prices[-1])
return res""",
"Example 3": """from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter
class Command(BaseXpressDemocracyClubCsvImporter):
council_id = 'E06000027'
addresses_name = 'parl.2017-06-08/Version 1/Torbay Democracy_Club__08June2017.tsv'
stations_name = 'parl.2017-06-08/Version 1/Torbay Democracy_Club__08June2017.tsv'
elections = ['parl.2017-06-08']
csv_delimiter = '\t'
"""
}
low_bleu_examples = {
"Example 1": """from zeit.cms.i18n import MessageFactory as _
import zope.interface
import zope.schema
class IGlobalSettings(zope.interface.Interface):
\"""Global CMS settings.\"""
default_year = zope.schema.Int(
title=_("Default year"),
min=1900,
max=2100)
default_volume = zope.schema.Int(
title=_("Default volume"),
min=1,
max=54)
def get_working_directory(template):
\"""Return the collection which is the main working directory.
template:
Template which will be filled with year and volume. In
``template`` the placeholders $year and $volume will be replaced.
Example: 'online/$year/$volume/foo'
If the respective collection does not exist, it will be created before
returning it.
\"""
""",
"Example 2": """# -*- coding: utf-8 -*-
\"""Context managers implemented for (mostly) internal use\"""
import contextlib
import functools
from io import UnsupportedOperation
import os
import sys
__all__ = ["RedirectStdout", "RedirectStderr"]
@contextlib.contextmanager
def _stdchannel_redirected(stdchannel, dest_filename, mode="w"):
\"""
A context manager to temporarily redirect stdout or stderr
Originally by Marc Abramowitz, 2013
(http://marc-abramowitz.com/archives/2013/07/19/python-context-manager-for-redirected-stdout-and-stderr/)
\"""
oldstdchannel = None
dest_file = None
try:
if stdchannel is None:
yield iter([None])
else:
oldstdchannel = os.dup(stdchannel.fileno())
dest_file = open(dest_filename, mode)
os.dup2(dest_file.fileno(), stdchannel.fileno())
yield
except (UnsupportedOperation, AttributeError):
yield iter([None])
finally:
if oldstdchannel is not None:
os.dup2(oldstdchannel, stdchannel.fileno())
if dest_file is not None:
dest_file.close()
RedirectStdout = functools.partial(_stdchannel_redirected, sys.stdout)
RedirectStderr = functools.partial(_stdchannel_redirected, sys.stderr)
RedirectNoOp = functools.partial(_stdchannel_redirected, None, "")
""",
"Example 3": """\"""Utils for criterion.\"""
import torch
import torch.nn.functional as F
def normalize(x, axis=-1):
\"""Performs L2-Norm.\"""
num = x
denom = torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12
return num / denom
# Source : https://github.com/earhian/Humpback-Whale-Identification-1st-/blob/master/models/triplet_loss.py
def euclidean_dist(x, y):
\"""Computes Euclidean distance.\"""
m, n = x.size(0), y.size(0)
xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
yy = torch.pow(x, 2).sum(1, keepdim=True).expand(m, m).t()
dist = xx + yy - 2 * torch.matmul(x, y.t())
dist = dist.clamp(min=1e-12).sqrt()
return dist
def cosine_dist(x, y):
\"""Computes Cosine Distance.\"""
x = F.normalize(x, dim=1)
y = F.normalize(y, dim=1)
dist = 2 - 2 * torch.mm(x, y.t())
return dist
"""
}
def complete(sample, k):
prefix_tokens = tokenizer(sample)["input_ids"][:k]
prefix = tokenizer.decode(prefix_tokens)
output = prefix
for token in client.text_generation(prefix, do_sample=False, max_new_tokens=512, stream=True):
if token == "<|endoftext|>":
bleu_score = {"BLEU": bleu.compute(predictions=[sample],
references=[output])["bleu"]}
return output, gr.Label.update(value=bleu_score)
output += token
bleu_score = {"BLEU": bleu.compute(predictions=[sample],
references=[output])["bleu"]}
yield output, gr.Label.update(value=bleu_score)
bleu_score = {"BLEU": bleu.compute(predictions=[sample],
references=[output])["bleu"]}
return output, gr.Label.update(value=bleu_score)
def high_bleu_mirror(x):
output = high_bleu_examples[x]
return output
def low_bleu_mirror(x):
output = low_bleu_examples[x]
return output
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
placeholder="Enter your code here",
lines=5,
label="Original",
)
with gr.Accordion("Advanced parameters", open=False):
k = gr.Slider(minimum=1, maximum=250, value=50)
submit = gr.Button("Check", variant="primary")
high_bleu_examples = gr.Examples(list(high_bleu_examples.keys()), label="High memorization samples",
inputs=instruction, outputs=instruction,
fn=high_bleu_mirror, cache_examples=True)
low_bleu_examples = gr.Examples(list(low_bleu_examples.keys()), label = "Low memorization samples",
inputs=instruction, outputs=instruction,
fn=low_bleu_mirror, cache_examples=True)
with gr.Column():
output = gr.Textbox(lines=5,
label="Completion", interactive=False)
label = gr.Label(value={"BLEU": 0},
label="Similarity score (BLEU)")
submit.click(
complete,
inputs=[instruction, k],
outputs=[output, label],
)
demo.queue(concurrency_count=16).launch(debug=True) |