import streamlit as st
import logging
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot, process_semantic_chat_input
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
logger = logging.getLogger(__name__)
def get_translation(t, key, default):
    return t.get(key, default)
def display_semantic_interface(lang_code, nlp_models, t):
    # Inicializar el chatbot al principio de la función
    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')
    st.markdown("""
        
    """, unsafe_allow_html=True)
    st.markdown(f"""
        
        {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
        
    """, unsafe_allow_html=True)
        # File management container
    st.markdown('', unsafe_allow_html=True)
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        if st.button("Upload File", key=generate_unique_key('semantic', 'upload_button')):
            st.session_state.show_uploader = True
    with col2:
        user_files = get_user_files(st.session_state.username, 'semantic')
        file_options = [get_translation(t, 'select_saved_file', 'Select a saved file')] + [file['file_name'] for file in user_files]
        selected_file = st.selectbox("", options=file_options, key=generate_unique_key('semantic', 'file_selector'))
    with col3:
        analyze_button = st.button("Analyze Document", key=generate_unique_key('semantic', 'analyze_document'))
    with col4:
        delete_button = st.button("Delete File", key=generate_unique_key('semantic', 'delete_file'))
    st.markdown('
', unsafe_allow_html=True)
    # File uploader (hidden by default)
    if st.session_state.get('show_uploader', False):
        uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
        if uploaded_file is not None:
            file_contents = uploaded_file.getvalue().decode('utf-8')
            if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
                st.session_state.file_contents = file_contents
                st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved successfully'))
                st.session_state.show_uploader = False  # Hide uploader after successful upload
            else:
                st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
    # Contenedor para la sección de análisis
    st.markdown('', unsafe_allow_html=True)
    col_chat, col_graph = st.columns([1, 1])
    with col_chat:
        st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
        chat_container = st.container()
        with chat_container:
            chat_history = st.session_state.get('semantic_chat_history', [])
            for message in chat_history:
                with st.chat_message(message["role"]):
                    st.write(message["content"])
        user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
        if user_input:
            chat_history.append({"role": "user", "content": user_input})
            if user_input.startswith('/analyze_current'):
                response = process_semantic_chat_input(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents', ''))
            else:
                response = st.session_state.semantic_chatbot.generate_response(user_input, lang_code)
            chat_history.append({"role": "assistant", "content": response})
            st.session_state.semantic_chat_history = chat_history
    with col_graph:
        st.subheader(get_translation(t, 'graph_title', 'Semantic Graphs'))
        # Mostrar conceptos clave y entidades horizontalmente
        if 'key_concepts' in st.session_state:
            st.write(get_translation(t, 'key_concepts_title', 'Key Concepts'))
            st.markdown('
', unsafe_allow_html=True)
            for concept, freq in st.session_state.key_concepts:
                st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
            st.markdown('
', unsafe_allow_html=True)
        if 'entities' in st.session_state:
            st.write(get_translation(t, 'entities_title', 'Entities'))
            st.markdown('
', unsafe_allow_html=True)
            for entity, type in st.session_state.entities.items():
                st.markdown(f'{entity}: {type}', unsafe_allow_html=True)
            st.markdown('
', unsafe_allow_html=True)
        # Usar pestañas para mostrar los gráficos
        tab1, tab2 = st.tabs(["Concept Graph", "Entity Graph"])
        with tab1:
            if 'concept_graph' in st.session_state:
                st.pyplot(st.session_state.concept_graph)
        with tab2:
            if 'entity_graph' in st.session_state:
                st.pyplot(st.session_state.entity_graph)
    st.markdown('