#modules/semantic/semantic_interface.py import streamlit as st from streamlit_float import * from streamlit_antd_components import * from streamlit.components.v1 import html import spacy_streamlit import io from io import BytesIO import base64 import matplotlib.pyplot as plt import pandas as pd import re import logging # Configuración del logger logger = logging.getLogger(__name__) # Importaciones locales from .semantic_process import ( process_semantic_input, format_semantic_results ) from ..utils.widget_utils import generate_unique_key from ..database.semantic_mongo_db import store_student_semantic_result from ..database.semantic_export import export_user_interactions def display_semantic_interface(lang_code, nlp_models, semantic_t): """ Interfaz para el análisis semántico con controles alineados horizontalmente """ # Forzar la página a semántico st.session_state.page = 'semantic' # Inicializar estados básicos if 'semantic_content' not in st.session_state: st.session_state.semantic_content = None if 'semantic_analyzed' not in st.session_state: st.session_state.semantic_analyzed = False # Contenedor principal with st.container(): # Una sola fila para todos los controles cols = st.columns([4, 2, 2, 2]) # Columna 1: Carga de archivo with cols[0]: uploaded_file = st.file_uploader( "Upload text file", # Simplificamos el mensaje type=['txt'], key="semantic_file_upload" ) # Columna 2: Botón de análisis with cols[1]: can_analyze = uploaded_file is not None and not st.session_state.semantic_analyzed if st.button('Analyze', disabled=not can_analyze, key="semantic_analyze"): if uploaded_file: text_content = uploaded_file.getvalue().decode('utf-8') # Realizar el análisis with st.spinner("Analyzing..."): analysis_result = process_semantic_input( text_content, lang_code, nlp_models, semantic_t ) if analysis_result['success']: st.session_state.semantic_result = analysis_result st.session_state.semantic_analyzed = True st.success("Analysis completed!") # Mostrar resultados display_semantic_results( analysis_result, lang_code, semantic_t ) # Columna 3: Botón de exportación with cols[2]: if st.button('Export', disabled=not st.session_state.semantic_analyzed, key="semantic_export"): if st.session_state.semantic_analyzed: try: pdf_buffer = export_user_interactions( st.session_state.username, 'semantic' ) st.download_button( "Download PDF", data=pdf_buffer, file_name="semantic_analysis.pdf", mime="application/pdf" ) except Exception as e: st.error(f"Error exporting: {str(e)}") # Columna 4: Botón de nuevo análisis with cols[3]: if st.button('New Analysis', disabled=not st.session_state.semantic_analyzed, key="semantic_new"): st.session_state.semantic_content = None st.session_state.semantic_analyzed = False st.session_state.semantic_result = None st.rerun() # Mostrar resultados si existen if st.session_state.semantic_analyzed and 'semantic_result' in st.session_state: display_semantic_results( st.session_state.semantic_result, lang_code, semantic_t ) elif not uploaded_file: st.info("Please upload a text file to begin analysis") def display_semantic_results(result, lang_code, semantic_t): """ Muestra los resultados del análisis semántico """ if result is None or not result['success']: st.warning(semantic_t.get('no_results', 'No results available')) return analysis = result['analysis'] # Crear tabs para los resultados tab1, tab2 = st.tabs([ semantic_t.get('concepts_tab', 'Key Concepts Analysis'), semantic_t.get('entities_tab', 'Entities Analysis') ]) # Tab 1: Conceptos Clave with tab1: col1, col2 = st.columns(2) # Columna 1: Lista de conceptos with col1: st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) concept_text = "\n".join([ f"• {concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts'] ]) st.markdown(concept_text) # Columna 2: Gráfico de conceptos with col2: st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) st.image(analysis['concept_graph']) # Tab 2: Entidades with tab2: col1, col2 = st.columns(2) # Columna 1: Lista de entidades with col1: st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) if 'entities' in analysis: for entity_type, entities in analysis['entities'].items(): st.markdown(f"**{entity_type}**") st.markdown("• " + "\n• ".join(entities)) # Columna 2: Gráfico de entidades with col2: st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) st.image(analysis['entity_graph'])