#modules/semantic/semantic_interface.py import streamlit as st from streamlit_float import * from streamlit_antd_components import * from streamlit.components.v1 import html import spacy_streamlit import io from io import BytesIO import base64 import matplotlib.pyplot as plt import pandas as pd import re import logging # Configuración del logger logger = logging.getLogger(__name__) # Importaciones locales from .semantic_process import ( process_semantic_input, format_semantic_results ) from ..utils.widget_utils import generate_unique_key from ..database.semantic_mongo_db import store_student_semantic_result from ..database.semantic_export import export_user_interactions def display_semantic_interface(lang_code, nlp_models, semantic_t): """ Interfaz para el análisis semántico Args: lang_code: Código del idioma actual nlp_models: Modelos de spaCy cargados semantic_t: Diccionario de traducciones """ # Mantener la página actual st.session_state.page = 'semantic' # Estilos para los botones y controles st.markdown(""" """, unsafe_allow_html=True) # Contenedor principal para controles with st.container(): col_upload, col_analyze, col_export, col_new = st.columns([4,2,2,2]) with col_upload: uploaded_file = st.file_uploader( semantic_t.get('file_uploader', 'Upload text file'), type=['txt'], key="semantic_file_uploader" # Key única para semántico ) with col_analyze: analyze_button = st.button( semantic_t.get('semantic_analyze_button', 'Analyze Semantics'), # Nombre específico key="semantic_analysis_button", # Key única para semántico disabled=(uploaded_file is None), use_container_width=True ) with col_export: export_button = st.button( semantic_t.get('semantic_export_button', 'Export Semantic'), # Nombre específico key="semantic_export_button", # Key única para semántico disabled=not ('semantic_result' in st.session_state), use_container_width=True ) with col_new: new_button = st.button( semantic_t.get('semantic_new_button', 'New Semantic'), # Nombre específico key="semantic_new_button", # Key única para semántico disabled=not ('semantic_result' in st.session_state), use_container_width=True ) # Línea separadora st.markdown("---") # Lógica de análisis if uploaded_file is not None and analyze_button: try: # Procesar el archivo text_content = uploaded_file.getvalue().decode('utf-8') with st.spinner(semantic_t.get('processing', 'Processing...')): # Realizar análisis analysis_result = perform_semantic_analysis( text_content, nlp_models[lang_code], lang_code ) # Guardar resultado st.session_state.semantic_result = analysis_result # Guardar en base de datos if store_student_semantic_result( st.session_state.username, text_content, analysis_result ): st.success(semantic_t.get('success_message', 'Analysis saved successfully')) else: st.error(semantic_t.get('error_message', 'Error saving analysis')) # Mostrar resultados display_semantic_results(analysis_result, lang_code, semantic_t) except Exception as e: st.error(f"Error: {str(e)}") # Manejo de exportación if export_button and 'semantic_result' in st.session_state: try: pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') st.download_button( label=semantic_t.get('download_pdf', 'Download PDF'), data=pdf_buffer, file_name="semantic_analysis.pdf", mime="application/pdf" ) except Exception as e: st.error(f"Error exporting: {str(e)}") # Nuevo análisis if new_button: if 'semantic_result' in st.session_state: del st.session_state.semantic_result st.rerun() # Mostrar resultados previos o mensaje inicial if 'semantic_result' in st.session_state: display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t) elif uploaded_file is None: st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis')) def display_semantic_results(result, lang_code, semantic_t): """ Muestra los resultados del análisis semántico """ if result is None or not result['success']: st.warning(semantic_t.get('no_results', 'No results available')) return analysis = result['analysis'] # Crear tabs para los resultados tab1, tab2 = st.tabs([ semantic_t.get('concepts_tab', 'Key Concepts Analysis'), semantic_t.get('entities_tab', 'Entities Analysis') ]) # Tab 1: Conceptos Clave with tab1: col1, col2 = st.columns(2) # Columna 1: Lista de conceptos with col1: st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) concept_text = "\n".join([ f"• {concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts'] ]) st.markdown(concept_text) # Columna 2: Gráfico de conceptos with col2: st.subheader(semantic_t.get('concept_graph', 'Concepts Graph')) st.image(analysis['concept_graph']) # Tab 2: Entidades with tab2: col1, col2 = st.columns(2) # Columna 1: Lista de entidades with col1: st.subheader(semantic_t.get('identified_entities', 'Identified Entities')) if 'entities' in analysis: for entity_type, entities in analysis['entities'].items(): st.markdown(f"**{entity_type}**") st.markdown("• " + "\n• ".join(entities)) # Columna 2: Gráfico de entidades with col2: st.subheader(semantic_t.get('entity_graph', 'Entities Graph')) st.image(analysis['entity_graph'])