# modules/database/discourse_mongo_db.py import matplotlib.pyplot as plt # Añadir esta importación al inicio import io import base64 from .mongo_db import ( get_collection, insert_document, find_documents, update_document, delete_document ) from datetime import datetime, timezone import logging logger = logging.getLogger(__name__) COLLECTION_NAME = 'student_discourse_analysis' def fig_to_bytes(fig): """Convierte una figura de matplotlib a bytes.""" try: buf = io.BytesIO() fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') buf.seek(0) return buf.getvalue() except Exception as e: logger.error(f"Error en fig_to_bytes: {str(e)}") return None ################################################################################# def store_student_discourse_result(username, text1, text2, analysis_result): """ Guarda el resultado del análisis de discurso comparativo en MongoDB. """ try: # Primero convertir las figuras a bytes if 'graph1' in analysis_result: try: # Convertir y guardar bytes del grafo 1 graph1_bytes = fig_to_bytes(analysis_result['graph1']) if graph1_bytes: analysis_result['graph1_bytes'] = graph1_bytes analysis_result['graph1_base64'] = base64.b64encode(graph1_bytes).decode('utf-8') plt.close(analysis_result['graph1']) # Cerrar la figura except Exception as e: logger.error(f"Error al procesar gráfico 1: {str(e)}") if 'graph2' in analysis_result: try: # Convertir y guardar bytes del grafo 2 graph2_bytes = fig_to_bytes(analysis_result['graph2']) if graph2_bytes: analysis_result['graph2_bytes'] = graph2_bytes analysis_result['graph2_base64'] = base64.b64encode(graph2_bytes).decode('utf-8') plt.close(analysis_result['graph2']) # Cerrar la figura except Exception as e: logger.error(f"Error al procesar gráfico 2: {str(e)}") # Crear documento para MongoDB analysis_document = { 'username': username, 'timestamp': datetime.now(timezone.utc).isoformat(), 'text1': text1, 'text2': text2, 'analysis_type': 'discourse', 'key_concepts1': analysis_result.get('key_concepts1', []), 'key_concepts2': analysis_result.get('key_concepts2', []), 'graph1_base64': analysis_result.get('graph1_base64'), 'graph2_base64': analysis_result.get('graph2_base64'), } # Insertar en MongoDB result = insert_document(COLLECTION_NAME, analysis_document) if not result: logger.error("No se pudo insertar el documento en MongoDB") return False logger.info(f"Análisis del discurso guardado con ID: {result} para el usuario: {username}") return True except Exception as e: logger.error(f"Error al guardar el análisis del discurso: {str(e)}") return False ################################################################################# def get_student_discourse_analysis(username, limit=10): """ Recupera los análisis del discurso de un estudiante. """ try: # Obtener la colección collection = get_collection(COLLECTION_NAME) if collection is None: # Cambiado de if not collection a if collection is None logger.error("No se pudo obtener la colección discourse") return [] # Consulta query = { "username": username, "analysis_type": "discourse" } # Campos a recuperar projection = { "timestamp": 1, "combined_graph": 1, "_id": 1 } # Ejecutar consulta try: cursor = collection.find(query, projection).sort("timestamp", -1) if limit: cursor = cursor.limit(limit) # Convertir cursor a lista results = list(cursor) logger.info(f"Recuperados {len(results)} análisis del discurso para {username}") return results except Exception as db_error: logger.error(f"Error en la consulta a MongoDB: {str(db_error)}") return [] except Exception as e: logger.error(f"Error recuperando análisis del discurso: {str(e)}") return [] ##################################################################################### def get_student_discourse_data(username): """ Obtiene un resumen de los análisis del discurso de un estudiante. """ try: analyses = get_student_discourse_analysis(username, limit=None) formatted_analyses = [] for analysis in analyses: formatted_analysis = { 'timestamp': analysis['timestamp'], 'text1': analysis.get('text1', ''), 'text2': analysis.get('text2', ''), 'key_concepts1': analysis.get('key_concepts1', []), 'key_concepts2': analysis.get('key_concepts2', []) } formatted_analyses.append(formatted_analysis) return {'entries': formatted_analyses} except Exception as e: logger.error(f"Error al obtener datos del discurso: {str(e)}") return {'entries': []} def update_student_discourse_analysis(analysis_id, update_data): """ Actualiza un análisis del discurso existente. """ try: query = {"_id": analysis_id} update = {"$set": update_data} return update_document(COLLECTION_NAME, query, update) except Exception as e: logger.error(f"Error al actualizar análisis del discurso: {str(e)}") return False def delete_student_discourse_analysis(analysis_id): """ Elimina un análisis del discurso. """ try: query = {"_id": analysis_id} return delete_document(COLLECTION_NAME, query) except Exception as e: logger.error(f"Error al eliminar análisis del discurso: {str(e)}") return False