#modules/morphosyntax/morphosyntax_interface.py import streamlit as st from streamlit_float import * from streamlit_antd_components import * from streamlit.components.v1 import html import base64 from .morphosyntax_process import process_morphosyntactic_input, format_analysis_results from ..utils.widget_utils import generate_unique_key from ..database.morphosintax_mongo_db import store_student_morphosyntax_result from ..database.chat_db import store_chat_history from ..database.morphosintaxis_export import export_user_interactions import logging logger = logging.getLogger(__name__) def display_morphosyntax_interface(lang_code, nlp_models, t): """ Interfaz para el análisis morfosintáctico Args: lang_code: Código del idioma actual nlp_models: Modelos de spaCy cargados t: Diccionario de traducciones """ # Asegurarnos de que estamos accediendo al diccionario MORPHOSYNTACTIC morpho_t = t.get('MORPHOSYNTACTIC', {}) st.title(morpho_t.get('title', 'AIdeaText - Morphological and Syntactic Analysis')) input_key = f"morphosyntax_input_{lang_code}" if input_key not in st.session_state: st.session_state[input_key] = "" sentence_input = st.text_area( morpho_t.get('morpho_input_label', 'Enter text to analyze:'), height=150, placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), value=st.session_state[input_key], key=f"text_area_{lang_code}", on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"]) ) if st.button(morpho_t.get('analyze_button', 'Analyze'), key=f"analyze_button_{lang_code}"): current_input = st.session_state[input_key] if current_input: doc = nlp_models[lang_code](current_input) # Análisis morfosintáctico avanzado advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code]) # Guardar el resultado en el estado de la sesión st.session_state.morphosyntax_result = { 'doc': doc, 'advanced_analysis': advanced_analysis } # Mostrar resultados display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, morpho_t) # Guardar resultados if store_morphosyntax_result( st.session_state.username, current_input, get_repeated_words_colors(doc), advanced_analysis['arc_diagram'], advanced_analysis['pos_analysis'], advanced_analysis['morphological_analysis'], advanced_analysis['sentence_structure'] ): st.success(morpho_t.get('success_message', 'Analysis saved successfully.')) else: st.error(morpho_t.get('error_message', 'Error saving analysis.')) else: st.warning(morpho_t.get('warning_message', 'Please enter a text to analyze.')) elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: # Si hay un resultado guardado, mostrarlo display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, morpho_t) else: st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis.')) ''' if user_input: # Añadir el mensaje del usuario al historial st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) # Procesar el input del usuario nuevo al 26-9-2024 response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) # Mostrar indicador de carga with st.spinner(t.get('processing', 'Processing...')): try: # Procesar el input del usuario response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) # Añadir la respuesta al historial message = { "role": "assistant", "content": response } if visualizations: message["visualizations"] = visualizations st.session_state.morphosyntax_chat_history.append(message) # Mostrar la respuesta más reciente with st.chat_message("assistant"): st.write(response) if visualizations: for i, viz in enumerate(visualizations): st.markdown(f"**Oración {i+1} del párrafo analizado**") st.components.v1.html( f"""