import streamlit as st
from .semantic_process import process_semantic_analysis
from ..chatbot.chatbot import initialize_chatbot
from ..database.database_oldFromV2 import store_file_semantic_contents, retrieve_file_contents, delete_file, get_user_files
from ..utils.widget_utils import generate_unique_key
def get_translation(t, key, default):
    return t.get(key, default)
def display_semantic_interface(lang_code, nlp_models, t):
    #st.set_page_config(layout="wide")
    # Estilo CSS personalizado
    st.markdown("""
        
    """, unsafe_allow_html=True)
    # Mostrar el mensaje inicial como un párrafo estilizado
    st.markdown(f"""
        
        {get_translation(t, 'semantic_initial_message', 'Welcome to the semantic analysis interface.')}
        
    """, unsafe_allow_html=True)
    # Inicializar el chatbot si no existe
    if 'semantic_chatbot' not in st.session_state:
        st.session_state.semantic_chatbot = initialize_chatbot('semantic')
    # Contenedor para la gestión de archivos
    with st.container():
        st.markdown('', unsafe_allow_html=True)
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            if st.button(get_translation(t, 'upload_file', 'Upload File'), key=generate_unique_key('semantic', 'upload_button')):
                uploaded_file = st.file_uploader(get_translation(t, 'file_uploader', 'Choose a file'), type=['txt', 'pdf', 'docx', 'doc', 'odt'], key=generate_unique_key('semantic', 'file_uploader'))
                if uploaded_file is not None:
                    file_contents = uploaded_file.getvalue().decode('utf-8')
                    if store_file_semantic_contents(st.session_state.username, uploaded_file.name, file_contents):
                        st.success(get_translation(t, 'file_uploaded_success', 'File uploaded and saved to database successfully'))
                        st.session_state.file_contents = file_contents
                        st.rerun()
                    else:
                        st.error(get_translation(t, 'file_upload_error', 'Error uploading file'))
        with col2:
            user_files = get_user_files(st.session_state.username, 'semantic')
            file_options = [get_translation(t, 'select_file', 'Select a file')] + [file['file_name'] for file in user_files]
            selected_file = st.selectbox(get_translation(t, 'file_list', 'File List'), options=file_options, key=generate_unique_key('semantic', 'file_selector'))
            if selected_file != get_translation(t, 'select_file', 'Select a file'):
                if st.button(get_translation(t, 'load_file', 'Load File'), key=generate_unique_key('semantic', 'load_file')):
                    file_contents = retrieve_file_contents(st.session_state.username, selected_file, 'semantic')
                    if file_contents:
                        st.session_state.file_contents = file_contents
                        st.success(get_translation(t, 'file_loaded_success', 'File loaded successfully'))
                    else:
                        st.error(get_translation(t, 'file_load_error', 'Error loading file'))
        with col3:
            if st.button(get_translation(t, 'analyze_document', 'Analyze Document'), key=generate_unique_key('semantic', 'analyze_document')):
                if 'file_contents' in st.session_state:
                    with st.spinner(get_translation(t, 'analyzing', 'Analyzing...')):
                        graph, key_concepts = process_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code)
                    st.session_state.graph = graph
                    st.session_state.key_concepts = key_concepts
                    st.success(get_translation(t, 'analysis_completed', 'Analysis completed'))
                else:
                    st.error(get_translation(t, 'no_file_uploaded', 'No file uploaded'))
        with col4:
            if st.button(get_translation(t, 'delete_file', 'Delete File'), key=generate_unique_key('semantic', 'delete_file')):
                if selected_file and selected_file != get_translation(t, 'select_file', 'Select a file'):
                    if delete_file(st.session_state.username, selected_file, 'semantic'):
                        st.success(get_translation(t, 'file_deleted_success', 'File deleted successfully'))
                        if 'file_contents' in st.session_state:
                            del st.session_state.file_contents
                        st.rerun()
                    else:
                        st.error(get_translation(t, 'file_delete_error', 'Error deleting file'))
                else:
                    st.error(get_translation(t, 'no_file_selected', 'No file selected'))
        st.markdown('
', unsafe_allow_html=True)
    # Crear dos columnas: una para el chat y otra para la visualización
    col_chat, col_graph = st.columns([1, 1])
    with col_chat:
        st.subheader(get_translation(t, 'chat_title', 'Semantic Analysis Chat'))
        # Chat interface
        chat_container = st.container()
        with chat_container:
            # Mostrar el historial del chat
            chat_history = st.session_state.get('semantic_chat_history', [])
            for message in chat_history:
                with st.chat_message(message["role"]):
                    st.write(message["content"])
        # Input del usuario
        user_input = st.chat_input(get_translation(t, 'semantic_chat_input', 'Type your message here...'), key=generate_unique_key('semantic', 'chat_input'))
        if user_input:
            # Añadir el mensaje del usuario al historial
            chat_history.append({"role": "user", "content": user_input})
            # Generar respuesta del chatbot
            chatbot = st.session_state.semantic_chatbot
            response = chatbot.generate_response(user_input, lang_code, context=st.session_state.get('file_contents'))
            # Añadir la respuesta del chatbot al historial
            chat_history.append({"role": "assistant", "content": response})
            # Actualizar el historial en session_state
            st.session_state.semantic_chat_history = chat_history
            # Forzar la actualización de la interfaz
            st.rerun()
    with col_graph:
        st.subheader(get_translation(t, 'graph_title', 'Semantic Graph'))
        # Mostrar conceptos clave en un expander horizontal
        with st.expander(get_translation(t, 'key_concepts_title', 'Key Concepts'), expanded=True):
            if 'key_concepts' in st.session_state:
                st.markdown('', unsafe_allow_html=True)
                for concept, freq in st.session_state.key_concepts:
                    st.markdown(f'{concept}: {freq:.2f}', unsafe_allow_html=True)
                st.markdown('
', unsafe_allow_html=True)
        if 'graph' in st.session_state:
            st.pyplot(st.session_state.graph)
    # Botón para limpiar el historial del chat
    if st.button(get_translation(t, 'clear_chat', 'Clear chat'), key=generate_unique_key('semantic', 'clear_chat')):
        st.session_state.semantic_chat_history = []
        st.rerun()