Update modules/morphosyntax/morphosyntax_interface.py
Browse files
modules/morphosyntax/morphosyntax_interface.py
CHANGED
@@ -182,45 +182,7 @@ def display_morphosyntax_results(result, lang_code, t):
|
|
182 |
with col2:
|
183 |
with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True):
|
184 |
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
|
185 |
-
|
186 |
-
# Definir el mapeo de columnas
|
187 |
-
column_mapping = {
|
188 |
-
'text': morpho_t.get('word', 'Word'),
|
189 |
-
'lemma': morpho_t.get('lemma', 'Lemma'),
|
190 |
-
'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
|
191 |
-
'dep': morpho_t.get('dependency', 'Dependency'),
|
192 |
-
'morph': morpho_t.get('morphology', 'Morphology')
|
193 |
-
}
|
194 |
-
|
195 |
-
# Renombrar las columnas existentes
|
196 |
-
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns})
|
197 |
-
|
198 |
-
# Primero definimos las columnas con morpho_t
|
199 |
-
cat_col = morpho_t.get('grammatical_category', 'Grammatical category')
|
200 |
-
dep_col = morpho_t.get('dependency', 'Dependency')
|
201 |
-
morph_col = morpho_t.get('morphology', 'Morphology')
|
202 |
-
|
203 |
-
# Luego las usamos en las transformaciones
|
204 |
-
morph_df[cat_col] = morph_df[cat_col].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
205 |
-
morph_df[dep_col] = morph_df[dep_col].map(lambda x: dep_translations[lang_code].get(x, x))
|
206 |
-
morph_df[morph_col] = morph_df[morph_col].apply(lambda x: translate_morph(x, lang_code))
|
207 |
-
|
208 |
-
# Seleccionar y ordenar las columnas a mostrar
|
209 |
-
columns_to_display = [
|
210 |
-
morpho_t.get('word', 'Word'),
|
211 |
-
morpho_t.get('lemma', 'Lemma'),
|
212 |
-
cat_col,
|
213 |
-
dep_col,
|
214 |
-
morph_col
|
215 |
-
]
|
216 |
-
columns_to_display = [col for col in columns_to_display if col in morph_df.columns]
|
217 |
-
|
218 |
-
# Mostrar el DataFrame
|
219 |
-
st.dataframe(morph_df[columns_to_display])
|
220 |
-
|
221 |
-
# Traducir las categorías gramaticales
|
222 |
-
morph_df[t['grammatical_category']] = morph_df[t['grammatical_category']].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
223 |
-
|
224 |
# Traducir las dependencias
|
225 |
dep_translations = {
|
226 |
'es': {
|
@@ -287,10 +249,46 @@ def display_morphosyntax_results(result, lang_code, t):
|
|
287 |
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
|
288 |
}
|
289 |
}
|
|
|
290 |
for key, value in morph_translations[lang_code].items():
|
291 |
morph_string = morph_string.replace(key, value)
|
292 |
return morph_string
|
293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code))
|
295 |
|
296 |
# Seleccionar y ordenar las columnas a mostrar
|
|
|
182 |
with col2:
|
183 |
with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True):
|
184 |
morph_df = pd.DataFrame(advanced_analysis['morphological_analysis'])
|
185 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
# Traducir las dependencias
|
187 |
dep_translations = {
|
188 |
'es': {
|
|
|
249 |
'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait'
|
250 |
}
|
251 |
}
|
252 |
+
|
253 |
for key, value in morph_translations[lang_code].items():
|
254 |
morph_string = morph_string.replace(key, value)
|
255 |
return morph_string
|
256 |
|
257 |
+
# Definir el mapeo de columnas
|
258 |
+
column_mapping = {
|
259 |
+
'text': morpho_t.get('word', 'Word'),
|
260 |
+
'lemma': morpho_t.get('lemma', 'Lemma'),
|
261 |
+
'pos': morpho_t.get('grammatical_category', 'Grammatical category'),
|
262 |
+
'dep': morpho_t.get('dependency', 'Dependency'),
|
263 |
+
'morph': morpho_t.get('morphology', 'Morphology')
|
264 |
+
}
|
265 |
+
|
266 |
+
# Renombrar las columnas existentes
|
267 |
+
morph_df = morph_df.rename(columns={col: new_name for col, new_name in column_mapping.items() if col in morph_df.columns})
|
268 |
+
|
269 |
+
# Primero definimos las columnas con morpho_t
|
270 |
+
cat_col = morpho_t.get('grammatical_category', 'Grammatical category')
|
271 |
+
dep_col = morpho_t.get('dependency', 'Dependency')
|
272 |
+
morph_col = morpho_t.get('morphology', 'Morphology')
|
273 |
+
|
274 |
+
# Luego las usamos en las transformaciones
|
275 |
+
morph_df[cat_col] = morph_df[cat_col].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x))
|
276 |
+
morph_df[dep_col] = morph_df[dep_col].map(lambda x: dep_translations[lang_code].get(x, x))
|
277 |
+
morph_df[morph_col] = morph_df[morph_col].apply(lambda x: translate_morph(x, lang_code))
|
278 |
+
|
279 |
+
# Seleccionar y ordenar las columnas a mostrar
|
280 |
+
columns_to_display = [
|
281 |
+
morpho_t.get('word', 'Word'),
|
282 |
+
morpho_t.get('lemma', 'Lemma'),
|
283 |
+
cat_col,
|
284 |
+
dep_col,
|
285 |
+
morph_col
|
286 |
+
]
|
287 |
+
columns_to_display = [col for col in columns_to_display if col in morph_df.columns]
|
288 |
+
|
289 |
+
# Mostrar el DataFrame
|
290 |
+
st.dataframe(morph_df[columns_to_display])
|
291 |
+
|
292 |
morph_df[t['morphology']] = morph_df[t['morphology']].apply(lambda x: translate_morph(x, lang_code))
|
293 |
|
294 |
# Seleccionar y ordenar las columnas a mostrar
|