Spaces:
Running
Running
Merge branch #AIdeaText/v3' into 'AIdeaText/v4'
Browse files
modules/semantic/semantic_interface.py
CHANGED
|
@@ -142,11 +142,6 @@ def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
|
| 142 |
def display_semantic_results(semantic_result, lang_code, semantic_t):
|
| 143 |
"""
|
| 144 |
Muestra los resultados del análisis semántico de conceptos clave.
|
| 145 |
-
|
| 146 |
-
Args:
|
| 147 |
-
semantic_result: Diccionario con los resultados del análisis
|
| 148 |
-
lang_code: Código del idioma actual
|
| 149 |
-
semantic_t: Diccionario de traducciones semánticas
|
| 150 |
"""
|
| 151 |
# Verificar resultado
|
| 152 |
if semantic_result is None or not semantic_result['success']:
|
|
@@ -155,8 +150,8 @@ def display_semantic_results(semantic_result, lang_code, semantic_t):
|
|
| 155 |
|
| 156 |
analysis = semantic_result['analysis']
|
| 157 |
|
| 158 |
-
# Crear contenedor para los resultados
|
| 159 |
-
col1, col2 = st.columns(2)
|
| 160 |
|
| 161 |
# Columna 1: Lista de conceptos clave
|
| 162 |
with col1:
|
|
@@ -177,7 +172,8 @@ def display_semantic_results(semantic_result, lang_code, semantic_t):
|
|
| 177 |
semantic_t.get('frequency', 'Frequency'): st.column_config.NumberColumn(
|
| 178 |
format="%.2f"
|
| 179 |
)
|
| 180 |
-
}
|
|
|
|
| 181 |
)
|
| 182 |
else:
|
| 183 |
st.info(semantic_t.get('no_concepts', 'No key concepts found'))
|
|
@@ -186,7 +182,20 @@ def display_semantic_results(semantic_result, lang_code, semantic_t):
|
|
| 186 |
with col2:
|
| 187 |
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
|
| 188 |
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
else:
|
| 191 |
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
| 192 |
|
|
|
|
| 142 |
def display_semantic_results(semantic_result, lang_code, semantic_t):
|
| 143 |
"""
|
| 144 |
Muestra los resultados del análisis semántico de conceptos clave.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
"""
|
| 146 |
# Verificar resultado
|
| 147 |
if semantic_result is None or not semantic_result['success']:
|
|
|
|
| 150 |
|
| 151 |
analysis = semantic_result['analysis']
|
| 152 |
|
| 153 |
+
# Crear contenedor para los resultados con proporciones ajustadas
|
| 154 |
+
col1, col2 = st.columns([1, 2]) # Cambio de [1, 1] a [1, 2] para dar más espacio al grafo
|
| 155 |
|
| 156 |
# Columna 1: Lista de conceptos clave
|
| 157 |
with col1:
|
|
|
|
| 172 |
semantic_t.get('frequency', 'Frequency'): st.column_config.NumberColumn(
|
| 173 |
format="%.2f"
|
| 174 |
)
|
| 175 |
+
},
|
| 176 |
+
height=400 # Añadido para dar más altura a la tabla
|
| 177 |
)
|
| 178 |
else:
|
| 179 |
st.info(semantic_t.get('no_concepts', 'No key concepts found'))
|
|
|
|
| 182 |
with col2:
|
| 183 |
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
|
| 184 |
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
| 185 |
+
# Contenedor para centrar la imagen
|
| 186 |
+
st.markdown(
|
| 187 |
+
"""
|
| 188 |
+
<style>
|
| 189 |
+
.stImage > img {
|
| 190 |
+
max-width: 100%;
|
| 191 |
+
display: block;
|
| 192 |
+
margin: 0 auto;
|
| 193 |
+
}
|
| 194 |
+
</style>
|
| 195 |
+
""",
|
| 196 |
+
unsafe_allow_html=True
|
| 197 |
+
)
|
| 198 |
+
st.image(analysis['concept_graph'], use_column_width=True)
|
| 199 |
else:
|
| 200 |
st.info(semantic_t.get('no_graph', 'No concept graph available'))
|
| 201 |
|
modules/text_analysis/semantic_analysis.py
CHANGED
|
@@ -256,21 +256,25 @@ def create_concept_graph(doc, key_concepts):
|
|
| 256 |
###############################################################################
|
| 257 |
def visualize_concept_graph(G, lang_code):
|
| 258 |
"""
|
| 259 |
-
Visualiza el grafo de conceptos.
|
| 260 |
"""
|
| 261 |
try:
|
| 262 |
-
# Crear nueva figura
|
| 263 |
-
fig = plt.figure(figsize=(12, 8))
|
| 264 |
|
| 265 |
if not G.nodes():
|
| 266 |
logger.warning("Grafo vacío, retornando figura vacía")
|
| 267 |
return fig
|
| 268 |
|
| 269 |
-
# Calcular layout
|
| 270 |
-
pos = nx.spring_layout(G, k=
|
| 271 |
|
| 272 |
-
#
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
| 275 |
|
| 276 |
# Dibujar grafo
|
|
@@ -284,11 +288,14 @@ def visualize_concept_graph(G, lang_code):
|
|
| 284 |
alpha=0.5,
|
| 285 |
edge_color='gray')
|
| 286 |
|
|
|
|
|
|
|
|
|
|
| 287 |
nx.draw_networkx_labels(G, pos,
|
| 288 |
-
font_size=
|
| 289 |
font_weight='bold')
|
| 290 |
|
| 291 |
-
plt.title("Red de conceptos relacionados")
|
| 292 |
plt.axis('off')
|
| 293 |
|
| 294 |
return fig
|
|
|
|
| 256 |
###############################################################################
|
| 257 |
def visualize_concept_graph(G, lang_code):
|
| 258 |
"""
|
| 259 |
+
Visualiza el grafo de conceptos con nodos ajustados según la longitud del texto.
|
| 260 |
"""
|
| 261 |
try:
|
| 262 |
+
# Crear nueva figura con mayor tamaño
|
| 263 |
+
fig = plt.figure(figsize=(15, 10)) # Aumentado de (12, 8) a (15, 10)
|
| 264 |
|
| 265 |
if not G.nodes():
|
| 266 |
logger.warning("Grafo vacío, retornando figura vacía")
|
| 267 |
return fig
|
| 268 |
|
| 269 |
+
# Calcular layout con más espacio
|
| 270 |
+
pos = nx.spring_layout(G, k=2, iterations=50) # Aumentado k de 1 a 2
|
| 271 |
|
| 272 |
+
# Calcular factor de escala basado en número de nodos
|
| 273 |
+
num_nodes = len(G.nodes())
|
| 274 |
+
scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200
|
| 275 |
+
|
| 276 |
+
# Obtener pesos ajustados
|
| 277 |
+
node_weights = [G.nodes[node].get('weight', 1) * scale_factor for node in G.nodes()]
|
| 278 |
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()]
|
| 279 |
|
| 280 |
# Dibujar grafo
|
|
|
|
| 288 |
alpha=0.5,
|
| 289 |
edge_color='gray')
|
| 290 |
|
| 291 |
+
# Ajustar tamaño de fuente según número de nodos
|
| 292 |
+
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
| 293 |
+
|
| 294 |
nx.draw_networkx_labels(G, pos,
|
| 295 |
+
font_size=font_size,
|
| 296 |
font_weight='bold')
|
| 297 |
|
| 298 |
+
plt.title("Red de conceptos relacionados", pad=20)
|
| 299 |
plt.axis('off')
|
| 300 |
|
| 301 |
return fig
|