AIdeaText commited on
Commit
8aeac38
·
verified ·
1 Parent(s): 91b2c3c

Update modules/semantic/semantic_interface.py

Browse files
modules/semantic/semantic_interface.py CHANGED
@@ -1,27 +1,4 @@
1
- #modules/semantic/semantic_interface.py
2
- import streamlit as st
3
- from streamlit_float import *
4
- from streamlit_antd_components import *
5
- from streamlit.components.v1 import html
6
- import io
7
- from io import BytesIO
8
- import base64
9
- import matplotlib.pyplot as plt
10
- import pandas as pd
11
- import re
12
-
13
- from .semantic_process import (
14
- process_semantic_input,
15
- format_semantic_results
16
- )
17
-
18
- from ..utils.widget_utils import generate_unique_key
19
- from ..database.semantic_mongo_db import store_student_semantic_result
20
- from ..database.semantic_export import export_user_interactions
21
-
22
- import logging
23
- logger = logging.getLogger(__name__)
24
-
25
  def display_semantic_interface(lang_code, nlp_models, semantic_t):
26
  """
27
  Interfaz para el análisis semántico
@@ -36,40 +13,37 @@ def display_semantic_interface(lang_code, nlp_models, semantic_t):
36
  if input_key not in st.session_state:
37
  st.session_state[input_key] = ""
38
 
39
- # Inicializar contador de análisis si no existe
40
  if 'semantic_analysis_counter' not in st.session_state:
41
  st.session_state.semantic_analysis_counter = 0
42
 
43
- # Campo de entrada de texto
44
  text_input = st.text_area(
45
  semantic_t.get('text_input_label', 'Enter text to analyze'),
46
  height=150,
47
  placeholder=semantic_t.get('text_input_placeholder', 'Enter your text here...'),
48
  value=st.session_state[input_key],
49
- key=generate_unique_key("semantic", "text_area")
50
  )
51
 
52
- # Opción para cargar archivo
53
  uploaded_file = st.file_uploader(
54
  semantic_t.get('file_uploader', 'Or upload a text file'),
55
  type=['txt'],
56
- key=generate_unique_key("semantic", "file_uploader")
57
  )
58
 
59
- # Botón de análisis
60
  analyze_button = st.button(
61
  semantic_t.get('analyze_button', 'Analyze text'),
62
- key=generate_unique_key("semantic", "analyze_button")
63
  )
64
 
65
  if analyze_button:
66
  if text_input or uploaded_file is not None:
67
  try:
68
  with st.spinner(semantic_t.get('processing', 'Processing...')):
69
- # Obtener el texto a analizar
70
  text_content = uploaded_file.getvalue().decode('utf-8') if uploaded_file else text_input
71
 
72
- # Realizar el análisis
73
  analysis_result = process_semantic_input(
74
  text_content,
75
  lang_code,
@@ -78,36 +52,33 @@ def display_semantic_interface(lang_code, nlp_models, semantic_t):
78
  )
79
 
80
  if analysis_result['success']:
81
- # Guardar resultado en el estado de la sesión
82
  st.session_state.semantic_result = analysis_result
83
  st.session_state.semantic_analysis_counter += 1
84
 
85
- # Mostrar resultados
86
- display_semantic_results(
87
- analysis_result,
88
- lang_code,
89
- semantic_t
90
- )
91
-
92
- # Guardar en la base de datos
93
  if store_student_semantic_result(
94
  st.session_state.username,
95
  text_content,
96
  analysis_result['analysis']
97
  ):
98
  st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
 
 
 
 
 
 
99
  else:
100
  st.error(semantic_t.get('error_message', 'Error saving analysis'))
101
  else:
102
  st.error(analysis_result['message'])
103
-
104
  except Exception as e:
105
  logger.error(f"Error en análisis semántico: {str(e)}")
106
  st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
107
  else:
108
  st.warning(semantic_t.get('warning_message', 'Please enter text or upload a file'))
109
-
110
- # Si no se presionó el botón, verificar si hay resultados previos
111
  elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
112
  display_semantic_results(
113
  st.session_state.semantic_result,
@@ -124,10 +95,6 @@ def display_semantic_interface(lang_code, nlp_models, semantic_t):
124
  def display_semantic_results(result, lang_code, semantic_t):
125
  """
126
  Muestra los resultados del análisis semántico
127
- Args:
128
- result: Resultados del análisis
129
- lang_code: Código del idioma
130
- semantic_t: Diccionario de traducciones
131
  """
132
  if result is None or not result['success']:
133
  st.warning(semantic_t.get('no_results', 'No results available'))
@@ -136,11 +103,7 @@ def display_semantic_results(result, lang_code, semantic_t):
136
  analysis = result['analysis']
137
 
138
  # Mostrar conceptos clave
139
- with st.expander(
140
- semantic_t.get('key_concepts', 'Key Concepts'),
141
- expanded=True,
142
- key=generate_unique_key("semantic", "key_concepts_expander")
143
- ):
144
  concept_text = " | ".join([
145
  f"{concept} ({frequency:.2f})"
146
  for concept, frequency in analysis['key_concepts']
@@ -148,42 +111,28 @@ def display_semantic_results(result, lang_code, semantic_t):
148
  st.write(concept_text)
149
 
150
  # Mostrar gráfico de relaciones conceptuales
151
- with st.expander(
152
- semantic_t.get('conceptual_relations', 'Conceptual Relations'),
153
- expanded=True,
154
- key=generate_unique_key("semantic", "concept_graph_expander")
155
- ):
156
  st.image(analysis['concept_graph'])
157
 
158
  # Mostrar gráfico de entidades
159
- with st.expander(
160
- semantic_t.get('entity_relations', 'Entity Relations'),
161
- expanded=True,
162
- key=generate_unique_key("semantic", "entity_graph_expander")
163
- ):
164
  st.image(analysis['entity_graph'])
165
 
166
  # Mostrar entidades identificadas
167
  if 'entities' in analysis:
168
- with st.expander(
169
- semantic_t.get('identified_entities', 'Identified Entities'),
170
- expanded=True,
171
- key=generate_unique_key("semantic", "entities_expander")
172
- ):
173
  for entity_type, entities in analysis['entities'].items():
174
  st.subheader(entity_type)
175
  st.write(", ".join(entities))
176
 
177
  # Botón de exportación
178
- if st.button(
179
- semantic_t.get('export_button', 'Export Analysis'),
180
- key=generate_unique_key("semantic", "export_button")
181
- ):
182
  pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
183
  st.download_button(
184
  label=semantic_t.get('download_pdf', 'Download PDF'),
185
  data=pdf_buffer,
186
  file_name="semantic_analysis.pdf",
187
  mime="application/pdf",
188
- key=generate_unique_key("semantic", "download_button")
189
  )
 
1
+ # modules/semantic/semantic_interface.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  def display_semantic_interface(lang_code, nlp_models, semantic_t):
3
  """
4
  Interfaz para el análisis semántico
 
13
  if input_key not in st.session_state:
14
  st.session_state[input_key] = ""
15
 
 
16
  if 'semantic_analysis_counter' not in st.session_state:
17
  st.session_state.semantic_analysis_counter = 0
18
 
19
+ # Campo de entrada de texto con key única
20
  text_input = st.text_area(
21
  semantic_t.get('text_input_label', 'Enter text to analyze'),
22
  height=150,
23
  placeholder=semantic_t.get('text_input_placeholder', 'Enter your text here...'),
24
  value=st.session_state[input_key],
25
+ key=f"semantic_text_area_{st.session_state.semantic_analysis_counter}"
26
  )
27
 
28
+ # Opción para cargar archivo con key única
29
  uploaded_file = st.file_uploader(
30
  semantic_t.get('file_uploader', 'Or upload a text file'),
31
  type=['txt'],
32
+ key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}"
33
  )
34
 
35
+ # Botón de análisis con key única
36
  analyze_button = st.button(
37
  semantic_t.get('analyze_button', 'Analyze text'),
38
+ key=f"semantic_analyze_button_{st.session_state.semantic_analysis_counter}"
39
  )
40
 
41
  if analyze_button:
42
  if text_input or uploaded_file is not None:
43
  try:
44
  with st.spinner(semantic_t.get('processing', 'Processing...')):
 
45
  text_content = uploaded_file.getvalue().decode('utf-8') if uploaded_file else text_input
46
 
 
47
  analysis_result = process_semantic_input(
48
  text_content,
49
  lang_code,
 
52
  )
53
 
54
  if analysis_result['success']:
 
55
  st.session_state.semantic_result = analysis_result
56
  st.session_state.semantic_analysis_counter += 1
57
 
58
+ # Guardar en la base de datos antes de mostrar resultados
 
 
 
 
 
 
 
59
  if store_student_semantic_result(
60
  st.session_state.username,
61
  text_content,
62
  analysis_result['analysis']
63
  ):
64
  st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
65
+ # Mostrar resultados
66
+ display_semantic_results(
67
+ analysis_result,
68
+ lang_code,
69
+ semantic_t
70
+ )
71
  else:
72
  st.error(semantic_t.get('error_message', 'Error saving analysis'))
73
  else:
74
  st.error(analysis_result['message'])
 
75
  except Exception as e:
76
  logger.error(f"Error en análisis semántico: {str(e)}")
77
  st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
78
  else:
79
  st.warning(semantic_t.get('warning_message', 'Please enter text or upload a file'))
80
+
81
+ # Mostrar resultados previos
82
  elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
83
  display_semantic_results(
84
  st.session_state.semantic_result,
 
95
  def display_semantic_results(result, lang_code, semantic_t):
96
  """
97
  Muestra los resultados del análisis semántico
 
 
 
 
98
  """
99
  if result is None or not result['success']:
100
  st.warning(semantic_t.get('no_results', 'No results available'))
 
103
  analysis = result['analysis']
104
 
105
  # Mostrar conceptos clave
106
+ with st.expander(semantic_t.get('key_concepts', 'Key Concepts'), expanded=True):
 
 
 
 
107
  concept_text = " | ".join([
108
  f"{concept} ({frequency:.2f})"
109
  for concept, frequency in analysis['key_concepts']
 
111
  st.write(concept_text)
112
 
113
  # Mostrar gráfico de relaciones conceptuales
114
+ with st.expander(semantic_t.get('conceptual_relations', 'Conceptual Relations'), expanded=True):
 
 
 
 
115
  st.image(analysis['concept_graph'])
116
 
117
  # Mostrar gráfico de entidades
118
+ with st.expander(semantic_t.get('entity_relations', 'Entity Relations'), expanded=True):
 
 
 
 
119
  st.image(analysis['entity_graph'])
120
 
121
  # Mostrar entidades identificadas
122
  if 'entities' in analysis:
123
+ with st.expander(semantic_t.get('identified_entities', 'Identified Entities'), expanded=True):
 
 
 
 
124
  for entity_type, entities in analysis['entities'].items():
125
  st.subheader(entity_type)
126
  st.write(", ".join(entities))
127
 
128
  # Botón de exportación
129
+ if st.button(semantic_t.get('export_button', 'Export Analysis'),
130
+ key=f"semantic_export_{st.session_state.semantic_analysis_counter}"):
 
 
131
  pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
132
  st.download_button(
133
  label=semantic_t.get('download_pdf', 'Download PDF'),
134
  data=pdf_buffer,
135
  file_name="semantic_analysis.pdf",
136
  mime="application/pdf",
137
+ key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
138
  )