Spaces:
Running
Running
Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
|
@@ -232,22 +232,81 @@ def analyze_cohesion(doc):
|
|
| 232 |
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n")
|
| 233 |
return 0.0
|
| 234 |
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
| 236 |
for i in range(len(sentences)-1):
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
except Exception as e:
|
| 248 |
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
| 249 |
return 0.0
|
| 250 |
|
|
|
|
|
|
|
| 251 |
def analyze_structure(doc):
|
| 252 |
"""Analiza la complejidad estructural"""
|
| 253 |
try:
|
|
@@ -272,12 +331,111 @@ def analyze_structure(doc):
|
|
| 272 |
return 0.0
|
| 273 |
|
| 274 |
# Funciones auxiliares de an谩lisis
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
for child in token.children:
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
|
| 283 |
optimal_connections=None, optimal_depth=None):
|
|
|
|
| 232 |
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n")
|
| 233 |
return 0.0
|
| 234 |
|
| 235 |
+
# 1. An谩lisis de conexiones l茅xicas
|
| 236 |
+
lexical_connections = 0
|
| 237 |
+
total_possible_connections = 0
|
| 238 |
+
|
| 239 |
for i in range(len(sentences)-1):
|
| 240 |
+
# Obtener lemmas significativos (no stopwords)
|
| 241 |
+
sent1_words = {token.lemma_ for token in sentences[i]
|
| 242 |
+
if token.is_alpha and not token.is_stop}
|
| 243 |
+
sent2_words = {token.lemma_ for token in sentences[i+1]
|
| 244 |
+
if token.is_alpha and not token.is_stop}
|
| 245 |
|
| 246 |
+
if sent1_words and sent2_words: # Verificar que ambos conjuntos no est茅n vac铆os
|
| 247 |
+
intersection = len(sent1_words.intersection(sent2_words))
|
| 248 |
+
total_possible = min(len(sent1_words), len(sent2_words))
|
| 249 |
+
|
| 250 |
+
if total_possible > 0:
|
| 251 |
+
lexical_score = intersection / total_possible
|
| 252 |
+
lexical_connections += lexical_score
|
| 253 |
+
total_possible_connections += 1
|
| 254 |
+
|
| 255 |
+
# 2. An谩lisis de conectores
|
| 256 |
+
connector_count = 0
|
| 257 |
+
connector_types = {
|
| 258 |
+
'CCONJ': 1.0, # Coordinantes
|
| 259 |
+
'SCONJ': 1.2, # Subordinantes
|
| 260 |
+
'ADV': 0.8 # Adverbios conectivos
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
for token in doc:
|
| 264 |
+
if (token.pos_ in connector_types and
|
| 265 |
+
token.dep_ in ['cc', 'mark', 'advmod'] and
|
| 266 |
+
not token.is_stop):
|
| 267 |
+
connector_count += connector_types[token.pos_]
|
| 268 |
+
|
| 269 |
+
# 3. C谩lculo de scores normalizados
|
| 270 |
+
if total_possible_connections > 0:
|
| 271 |
+
lexical_cohesion = lexical_connections / total_possible_connections
|
| 272 |
+
else:
|
| 273 |
+
lexical_cohesion = 0
|
| 274 |
|
| 275 |
+
if len(sentences) > 1:
|
| 276 |
+
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
|
| 277 |
+
else:
|
| 278 |
+
connector_cohesion = 0
|
| 279 |
+
|
| 280 |
+
# 4. Score final ponderado
|
| 281 |
+
weights = {
|
| 282 |
+
'lexical': 0.7,
|
| 283 |
+
'connectors': 0.3
|
| 284 |
+
}
|
| 285 |
+
|
| 286 |
+
cohesion_score = (
|
| 287 |
+
weights['lexical'] * lexical_cohesion +
|
| 288 |
+
weights['connectors'] * connector_cohesion
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# 5. Logging para diagn贸stico
|
| 292 |
+
logger.info(f"""
|
| 293 |
+
An谩lisis de Cohesi贸n:
|
| 294 |
+
- Conexiones l茅xicas encontradas: {lexical_connections}
|
| 295 |
+
- Conexiones posibles: {total_possible_connections}
|
| 296 |
+
- Lexical cohesion score: {lexical_cohesion}
|
| 297 |
+
- Conectores encontrados: {connector_count}
|
| 298 |
+
- Connector cohesion score: {connector_cohesion}
|
| 299 |
+
- Score final: {cohesion_score}
|
| 300 |
+
""")
|
| 301 |
+
|
| 302 |
+
return cohesion_score
|
| 303 |
+
|
| 304 |
except Exception as e:
|
| 305 |
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
| 306 |
return 0.0
|
| 307 |
|
| 308 |
+
|
| 309 |
+
|
| 310 |
def analyze_structure(doc):
|
| 311 |
"""Analiza la complejidad estructural"""
|
| 312 |
try:
|
|
|
|
| 331 |
return 0.0
|
| 332 |
|
| 333 |
# Funciones auxiliares de an谩lisis
|
| 334 |
+
|
| 335 |
+
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
|
| 336 |
+
"""
|
| 337 |
+
Analiza la profundidad y calidad de las relaciones de dependencia.
|
| 338 |
+
|
| 339 |
+
Args:
|
| 340 |
+
token: Token a analizar
|
| 341 |
+
depth: Profundidad actual en el 谩rbol
|
| 342 |
+
analyzed_tokens: Set para evitar ciclos en el an谩lisis
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
dict: Informaci贸n detallada sobre las dependencias
|
| 346 |
+
- depths: Lista de profundidades
|
| 347 |
+
- relations: Diccionario con tipos de relaciones encontradas
|
| 348 |
+
- complexity_score: Puntuaci贸n de complejidad
|
| 349 |
+
"""
|
| 350 |
+
if analyzed_tokens is None:
|
| 351 |
+
analyzed_tokens = set()
|
| 352 |
+
|
| 353 |
+
# Evitar ciclos
|
| 354 |
+
if token.i in analyzed_tokens:
|
| 355 |
+
return {
|
| 356 |
+
'depths': [],
|
| 357 |
+
'relations': {},
|
| 358 |
+
'complexity_score': 0
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
analyzed_tokens.add(token.i)
|
| 362 |
+
|
| 363 |
+
# Pesos para diferentes tipos de dependencias
|
| 364 |
+
dependency_weights = {
|
| 365 |
+
# Dependencias principales
|
| 366 |
+
'nsubj': 1.2, # Sujeto nominal
|
| 367 |
+
'obj': 1.1, # Objeto directo
|
| 368 |
+
'iobj': 1.1, # Objeto indirecto
|
| 369 |
+
'ROOT': 1.3, # Ra铆z
|
| 370 |
+
|
| 371 |
+
# Modificadores
|
| 372 |
+
'amod': 0.8, # Modificador adjetival
|
| 373 |
+
'advmod': 0.8, # Modificador adverbial
|
| 374 |
+
'nmod': 0.9, # Modificador nominal
|
| 375 |
+
|
| 376 |
+
# Estructuras complejas
|
| 377 |
+
'csubj': 1.4, # Cl谩usula como sujeto
|
| 378 |
+
'ccomp': 1.3, # Complemento clausal
|
| 379 |
+
'xcomp': 1.2, # Complemento clausal abierto
|
| 380 |
+
'advcl': 1.2, # Cl谩usula adverbial
|
| 381 |
+
|
| 382 |
+
# Coordinaci贸n y subordinaci贸n
|
| 383 |
+
'conj': 1.1, # Conjunci贸n
|
| 384 |
+
'cc': 0.7, # Coordinaci贸n
|
| 385 |
+
'mark': 0.8, # Marcador
|
| 386 |
+
|
| 387 |
+
# Otros
|
| 388 |
+
'det': 0.5, # Determinante
|
| 389 |
+
'case': 0.5, # Caso
|
| 390 |
+
'punct': 0.1 # Puntuaci贸n
|
| 391 |
+
}
|
| 392 |
+
|
| 393 |
+
# Inicializar resultados
|
| 394 |
+
current_result = {
|
| 395 |
+
'depths': [depth],
|
| 396 |
+
'relations': {token.dep_: 1},
|
| 397 |
+
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
# Analizar hijos recursivamente
|
| 401 |
for child in token.children:
|
| 402 |
+
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
|
| 403 |
+
|
| 404 |
+
# Combinar profundidades
|
| 405 |
+
current_result['depths'].extend(child_result['depths'])
|
| 406 |
+
|
| 407 |
+
# Combinar relaciones
|
| 408 |
+
for rel, count in child_result['relations'].items():
|
| 409 |
+
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
|
| 410 |
+
|
| 411 |
+
# Acumular score de complejidad
|
| 412 |
+
current_result['complexity_score'] += child_result['complexity_score']
|
| 413 |
+
|
| 414 |
+
# Calcular m茅tricas adicionales
|
| 415 |
+
current_result['max_depth'] = max(current_result['depths'])
|
| 416 |
+
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
|
| 417 |
+
current_result['relation_diversity'] = len(current_result['relations'])
|
| 418 |
+
|
| 419 |
+
# Calcular score ponderado por tipo de estructura
|
| 420 |
+
structure_bonus = 0
|
| 421 |
+
|
| 422 |
+
# Bonus por estructuras complejas
|
| 423 |
+
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
|
| 424 |
+
structure_bonus += 0.3
|
| 425 |
+
|
| 426 |
+
# Bonus por coordinaci贸n balanceada
|
| 427 |
+
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
|
| 428 |
+
structure_bonus += 0.2
|
| 429 |
+
|
| 430 |
+
# Bonus por modificaci贸n rica
|
| 431 |
+
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
|
| 432 |
+
structure_bonus += 0.2
|
| 433 |
+
|
| 434 |
+
current_result['final_score'] = (
|
| 435 |
+
current_result['complexity_score'] * (1 + structure_bonus)
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
return current_result
|
| 439 |
|
| 440 |
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
|
| 441 |
optimal_connections=None, optimal_depth=None):
|