Update modules/studentact/current_situation_interface.py
Browse files
modules/studentact/current_situation_interface.py
CHANGED
@@ -90,12 +90,18 @@ ANALYSIS_DIMENSION_MAPPING = {
|
|
90 |
}
|
91 |
}
|
92 |
|
|
|
93 |
#Función principal ####################################
|
94 |
def display_current_situation_interface(lang_code, nlp_models, t):
|
95 |
"""
|
96 |
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
|
|
|
|
|
|
|
|
|
|
97 |
"""
|
98 |
-
# Inicializar estados si no existen
|
99 |
if 'text_input' not in st.session_state:
|
100 |
st.session_state.text_input = ""
|
101 |
if 'text_area' not in st.session_state:
|
@@ -116,93 +122,91 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
116 |
st.session_state.show_iter = False
|
117 |
|
118 |
try:
|
119 |
-
# --- [1] Selector de tipo de texto
|
120 |
-
st.
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
st.session_state.current_text_type = text_type
|
130 |
-
|
131 |
-
# --- [2] Contenedor principal en 4 columnas ---
|
132 |
-
st.markdown("---")
|
133 |
-
st.markdown("## Análisis de Texto en Cuatro Columnas")
|
134 |
-
|
135 |
-
# Usamos st.columns(4) para distribuir todo en partes iguales
|
136 |
-
text_base_col, metrics_base_col, text_iter_col, metrics_iter_col = st.columns(4, gap="medium")
|
137 |
|
138 |
-
#
|
|
|
|
|
|
|
139 |
with text_base_col:
|
140 |
-
|
|
|
141 |
text_base = st.text_area(
|
142 |
"Texto original",
|
143 |
-
height=300,
|
144 |
key="text_base",
|
145 |
value=st.session_state.base_text,
|
146 |
)
|
147 |
-
|
148 |
# Botón para analizar base
|
|
|
149 |
if st.button("Analizar Base", key="btn_analizar_base"):
|
150 |
with st.spinner("Analizando texto base..."):
|
151 |
doc = nlp_models[lang_code](text_base)
|
152 |
-
metrics = analyze_text_dimensions(doc)
|
153 |
-
|
154 |
# Guardar en estado
|
155 |
st.session_state.base_text = text_base
|
156 |
st.session_state.base_metrics = metrics
|
157 |
st.session_state.show_base = True
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
title="Base",
|
167 |
-
show_suggestions=False # Solo mostrar las métricas, sin sugerencias
|
168 |
-
)
|
169 |
-
|
170 |
-
# ------- Columna 3: Texto Iteración -------
|
171 |
-
with text_iter_col:
|
172 |
-
st.markdown("### Iteración")
|
173 |
text_iter = st.text_area(
|
174 |
"Nueva versión",
|
175 |
-
height=300,
|
176 |
key="text_iter",
|
177 |
value=st.session_state.iter_text,
|
178 |
-
disabled=not st.session_state.show_base
|
179 |
)
|
180 |
-
|
|
|
181 |
# Botón para analizar iteración
|
182 |
-
if st.button(
|
183 |
-
"Analizar Iteración",
|
184 |
-
key="btn_analizar_iter",
|
185 |
-
disabled=not st.session_state.show_base
|
186 |
-
):
|
187 |
with st.spinner("Analizando iteración..."):
|
188 |
doc = nlp_models[lang_code](text_iter)
|
189 |
-
metrics = analyze_text_dimensions(doc)
|
190 |
-
|
191 |
# Guardar en estado
|
192 |
st.session_state.iter_text = text_iter
|
193 |
st.session_state.iter_metrics = metrics
|
194 |
st.session_state.show_iter = True
|
195 |
|
196 |
-
#
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
except Exception as e:
|
208 |
logger.error(f"Error en interfaz: {str(e)}")
|
@@ -210,6 +214,44 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
210 |
|
211 |
#Funciones de visualización ##################################
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
def display_metrics_analysis(metrics, text_type=None):
|
214 |
"""
|
215 |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
|
|
90 |
}
|
91 |
}
|
92 |
|
93 |
+
#Función principal ####################################
|
94 |
#Función principal ####################################
|
95 |
def display_current_situation_interface(lang_code, nlp_models, t):
|
96 |
"""
|
97 |
Interfaz simplificada con gráfico de radar para visualizar métricas.
|
98 |
+
Incluye:
|
99 |
+
1) Expander para el selector de tipo de texto
|
100 |
+
2) Text areas sin altura fija
|
101 |
+
3) Métricas base e iteración alineadas horizontalmente
|
102 |
+
4) Recomendaciones en una fila aparte
|
103 |
"""
|
104 |
+
# --- Inicializar estados si no existen ---
|
105 |
if 'text_input' not in st.session_state:
|
106 |
st.session_state.text_input = ""
|
107 |
if 'text_area' not in st.session_state:
|
|
|
122 |
st.session_state.show_iter = False
|
123 |
|
124 |
try:
|
125 |
+
# --- [1] Selector de tipo de texto dentro de un expander ---
|
126 |
+
with st.expander("Selecciona el tipo de texto", expanded=True):
|
127 |
+
text_type = st.radio(
|
128 |
+
"¿Qué tipo de texto quieres analizar?",
|
129 |
+
options=list(TEXT_TYPES.keys()),
|
130 |
+
format_func=lambda x: TEXT_TYPES[x]['name'],
|
131 |
+
index=1,
|
132 |
+
help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
|
133 |
+
)
|
134 |
+
st.session_state.current_text_type = text_type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
st.markdown("---") # Una línea divisoria
|
137 |
+
|
138 |
+
# --- ÁREA DE TEXTO PARA EL TEXTO BASE ---
|
139 |
+
text_base_col, analyze_base_col = st.columns([3,1], gap="medium")
|
140 |
with text_base_col:
|
141 |
+
# Texto Base (sin altura fija: quitamos height=...)
|
142 |
+
st.write("**Texto Base**") # Título breve (o puedes eliminarlo si deseas menos ruido)
|
143 |
text_base = st.text_area(
|
144 |
"Texto original",
|
|
|
145 |
key="text_base",
|
146 |
value=st.session_state.base_text,
|
147 |
)
|
148 |
+
with analyze_base_col:
|
149 |
# Botón para analizar base
|
150 |
+
st.write("") # Un ligero espacio
|
151 |
if st.button("Analizar Base", key="btn_analizar_base"):
|
152 |
with st.spinner("Analizando texto base..."):
|
153 |
doc = nlp_models[lang_code](text_base)
|
154 |
+
metrics = analyze_text_dimensions(doc)
|
|
|
155 |
# Guardar en estado
|
156 |
st.session_state.base_text = text_base
|
157 |
st.session_state.base_metrics = metrics
|
158 |
st.session_state.show_base = True
|
159 |
|
160 |
+
st.markdown("---")
|
161 |
+
|
162 |
+
# --- ÁREA DE TEXTO PARA LA ITERACIÓN ---
|
163 |
+
iter_text_col, analyze_iter_col = st.columns([3,1], gap="medium")
|
164 |
+
with iter_text_col:
|
165 |
+
# Texto Iteración
|
166 |
+
st.write("**Texto de Iteración**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
text_iter = st.text_area(
|
168 |
"Nueva versión",
|
|
|
169 |
key="text_iter",
|
170 |
value=st.session_state.iter_text,
|
171 |
+
disabled=not st.session_state.show_base
|
172 |
)
|
173 |
+
with analyze_iter_col:
|
174 |
+
st.write("") # Espacio
|
175 |
# Botón para analizar iteración
|
176 |
+
if st.button("Analizar Iteración", key="btn_analizar_iter", disabled=not st.session_state.show_base):
|
|
|
|
|
|
|
|
|
177 |
with st.spinner("Analizando iteración..."):
|
178 |
doc = nlp_models[lang_code](text_iter)
|
179 |
+
metrics = analyze_text_dimensions(doc)
|
|
|
180 |
# Guardar en estado
|
181 |
st.session_state.iter_text = text_iter
|
182 |
st.session_state.iter_metrics = metrics
|
183 |
st.session_state.show_iter = True
|
184 |
|
185 |
+
# --- [2] Métricas en una línea (base) + (iteración) alineadas ---
|
186 |
+
st.markdown("---")
|
187 |
+
|
188 |
+
# Fila de métricas base
|
189 |
+
if st.session_state.show_base and 'base_metrics' in st.session_state:
|
190 |
+
st.markdown("**Métrica base:**")
|
191 |
+
display_metrics_in_one_line(st.session_state.base_metrics, text_type)
|
192 |
+
|
193 |
+
# Fila de métricas iteración
|
194 |
+
if st.session_state.show_iter and 'iter_metrics' in st.session_state:
|
195 |
+
st.markdown("**Métricas de iteración:**")
|
196 |
+
display_metrics_in_one_line(st.session_state.iter_metrics, text_type)
|
197 |
+
|
198 |
+
# --- [3] Recomendaciones en una fila separada (opcional) ---
|
199 |
+
if st.session_state.show_iter and 'iter_metrics' in st.session_state:
|
200 |
+
# Si deseas basar las recomendaciones en la comparación base vs iteración:
|
201 |
+
# Podrías comparar e invocar funciones personalizadas
|
202 |
+
st.markdown("**Recomendaciones:**")
|
203 |
+
# Aquí, por ejemplo, revisas cada dimensión y das consejos si es menor a la meta
|
204 |
+
for dimension, values in st.session_state.iter_metrics.items():
|
205 |
+
score = values['normalized_score']
|
206 |
+
target = TEXT_TYPES[text_type]['thresholds'][dimension]['target']
|
207 |
+
if score < target:
|
208 |
+
# Muestras las sugerencias
|
209 |
+
suggest_improvement_tools(dimension)
|
210 |
|
211 |
except Exception as e:
|
212 |
logger.error(f"Error en interfaz: {str(e)}")
|
|
|
214 |
|
215 |
#Funciones de visualización ##################################
|
216 |
|
217 |
+
def display_metrics_in_one_line(metrics, text_type):
|
218 |
+
"""
|
219 |
+
Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad)
|
220 |
+
en una sola línea, usando 4 columnas.
|
221 |
+
"""
|
222 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
223 |
+
dimensions = ["vocabulary", "structure", "cohesion", "clarity"]
|
224 |
+
|
225 |
+
# Creamos 4 columnas
|
226 |
+
col1, col2, col3, col4 = st.columns(4)
|
227 |
+
cols = [col1, col2, col3, col4]
|
228 |
+
|
229 |
+
for dim, col in zip(dimensions, cols):
|
230 |
+
score = metrics[dim]['normalized_score']
|
231 |
+
target = thresholds[dim]['target']
|
232 |
+
min_val = thresholds[dim]['min']
|
233 |
+
|
234 |
+
# Determinar estado y color
|
235 |
+
if score < min_val:
|
236 |
+
status = "⚠️ Por mejorar"
|
237 |
+
color = "inverse"
|
238 |
+
elif score < target:
|
239 |
+
status = "📈 Aceptable"
|
240 |
+
color = "off"
|
241 |
+
else:
|
242 |
+
status = "✅ Óptimo"
|
243 |
+
color = "normal"
|
244 |
+
|
245 |
+
with col:
|
246 |
+
# Muestra la métrica con un st.metric
|
247 |
+
col.metric(
|
248 |
+
label=dim.capitalize(),
|
249 |
+
value=f"{score:.2f}",
|
250 |
+
delta=f"{status} (Meta: {target:.2f})",
|
251 |
+
delta_color=color
|
252 |
+
)
|
253 |
+
|
254 |
+
##################################################################
|
255 |
def display_metrics_analysis(metrics, text_type=None):
|
256 |
"""
|
257 |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|