Spaces:
Running
Running
| import streamlit as st | |
| from .semantic_process import process_semantic_analysis | |
| from ..chatbot.chatbot import initialize_chatbot | |
| from ..database.database_oldFromV2 import store_semantic_result | |
| from ..text_analysis.semantic_analysis import perform_semantic_analysis | |
| from ..utils.widget_utils import generate_unique_key | |
| def display_semantic_interface(lang_code, nlp_models, t): | |
| st.subheader(t['title']) | |
| # Inicializar el chatbot si no existe | |
| if 'semantic_chatbot' not in st.session_state: | |
| st.session_state.semantic_chatbot = initialize_chatbot('semantic') | |
| # Secci贸n para cargar archivo | |
| uploaded_file = st.file_uploader(t['file_uploader'], type=['txt', 'pdf', 'docx', 'doc', 'odt']) | |
| if uploaded_file: | |
| file_contents = uploaded_file.getvalue().decode('utf-8') | |
| st.session_state.file_contents = file_contents | |
| # Mostrar el historial del chat | |
| chat_history = st.session_state.get('semantic_chat_history', []) | |
| for message in chat_history: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| if "visualization" in message: | |
| st.pyplot(message["visualization"]) | |
| # Input del usuario | |
| user_input = st.chat_input(t['semantic_initial_message'], key=generate_unique_key('semantic', st.session_state.username)) | |
| if user_input: | |
| # Procesar el input del usuario | |
| response, visualization = process_semantic_analysis(user_input, lang_code, nlp_models[lang_code], st.session_state.get('file_contents'), t) | |
| # Actualizar el historial del chat | |
| chat_history.append({"role": "user", "content": user_input}) | |
| chat_history.append({"role": "assistant", "content": response, "visualization": visualization}) | |
| st.session_state.semantic_chat_history = chat_history | |
| # Mostrar el resultado m谩s reciente | |
| with st.chat_message("assistant"): | |
| st.write(response) | |
| if visualization: | |
| st.pyplot(visualization) | |
| # Guardar el resultado en la base de datos si es un an谩lisis | |
| if user_input.startswith('/analisis_semantico'): | |
| result = perform_semantic_analysis(st.session_state.file_contents, nlp_models[lang_code], lang_code) | |
| store_semantic_result(st.session_state.username, st.session_state.file_contents, result) | |
| # Bot贸n para limpiar el historial del chat | |
| if st.button(t['clear_chat'], key=generate_unique_key('semantic', 'clear_chat')): | |
| st.session_state.semantic_chat_history = [] | |
| st.rerun() |