Spaces:
Running
Running
| #modules/morphosyntax/morphosyntax_interface.py | |
| import streamlit as st | |
| from streamlit_float import * | |
| from streamlit_antd_components import * | |
| from streamlit.components.v1 import html | |
| import spacy | |
| from spacy import displacy | |
| import spacy_streamlit | |
| import pandas as pd | |
| import base64 | |
| import re | |
| # Importar desde morphosyntax_process.py | |
| from .morphosyntax_process import ( | |
| process_morphosyntactic_input, | |
| format_analysis_results, | |
| perform_advanced_morphosyntactic_analysis, # Añadir esta importación | |
| get_repeated_words_colors, # Y estas también | |
| highlight_repeated_words, | |
| POS_COLORS, | |
| POS_TRANSLATIONS | |
| ) | |
| from ..utils.widget_utils import generate_unique_key | |
| from ..database.morphosintax_mongo_db import store_student_morphosyntax_result | |
| from ..database.chat_mongo_db import store_chat_history, get_chat_history | |
| # from ..database.morphosintaxis_export import export_user_interactions | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| ############################################################################################################ | |
| def display_morphosyntax_interface(lang_code, nlp_models, morpho_t): | |
| try: | |
| # 1. Inicializar el estado morfosintáctico si no existe | |
| if 'morphosyntax_state' not in st.session_state: | |
| st.session_state.morphosyntax_state = { | |
| 'input_text': "", | |
| 'analysis_count': 0, | |
| 'last_analysis': None | |
| } | |
| # 2. Campo de entrada de texto con key única basada en el contador | |
| input_key = f"morpho_input_{st.session_state.morphosyntax_state['analysis_count']}" | |
| sentence_input = st.text_area( | |
| morpho_t.get('morpho_input_label', 'Enter text to analyze'), | |
| height=150, | |
| placeholder=morpho_t.get('morpho_input_placeholder', 'Enter your text here...'), | |
| key=input_key | |
| ) | |
| # 3. Actualizar el estado con el texto actual | |
| st.session_state.morphosyntax_state['input_text'] = sentence_input | |
| # 4. Crear columnas para el botón | |
| col1, col2, col3 = st.columns([2,1,2]) | |
| # 5. Botón de análisis en la columna central | |
| with col1: | |
| analyze_button = st.button( | |
| morpho_t.get('morpho_analyze_button', 'Analyze Morphosyntax'), | |
| key=f"morpho_button_{st.session_state.morphosyntax_state['analysis_count']}", | |
| type="primary", # Nuevo en Streamlit 1.39.0 | |
| icon="🔍", # Nuevo en Streamlit 1.39.0 | |
| disabled=not bool(sentence_input.strip()), # Se activa solo cuando hay texto | |
| use_container_width=True | |
| ) | |
| # 6. Lógica de análisis | |
| if analyze_button and sentence_input.strip(): # Verificar que haya texto y no solo espacios | |
| try: | |
| with st.spinner(morpho_t.get('processing', 'Processing...')): | |
| # Obtener el modelo específico del idioma y procesar el texto | |
| doc = nlp_models[lang_code](sentence_input) | |
| # Realizar análisis morfosintáctico con el mismo modelo | |
| advanced_analysis = perform_advanced_morphosyntactic_analysis( | |
| sentence_input, | |
| nlp_models[lang_code] | |
| ) | |
| # Guardar resultado en el estado de la sesión | |
| st.session_state.morphosyntax_result = { | |
| 'doc': doc, | |
| 'advanced_analysis': advanced_analysis | |
| } | |
| # Incrementar el contador de análisis | |
| st.session_state.morphosyntax_state['analysis_count'] += 1 | |
| # Guardar el análisis en la base de datos | |
| if store_student_morphosyntax_result( | |
| username=st.session_state.username, | |
| text=sentence_input, | |
| arc_diagrams=advanced_analysis['arc_diagrams'] | |
| ): | |
| st.success(morpho_t.get('success_message', 'Analysis saved successfully')) | |
| # Mostrar resultados | |
| display_morphosyntax_results( | |
| st.session_state.morphosyntax_result, | |
| lang_code, | |
| morpho_t | |
| ) | |
| else: | |
| st.error(morpho_t.get('error_message', 'Error saving analysis')) | |
| except Exception as e: | |
| logger.error(f"Error en análisis morfosintáctico: {str(e)}") | |
| st.error(morpho_t.get('error_processing', f'Error processing text: {str(e)}')) | |
| # 7. Mostrar resultados previos si existen | |
| elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: | |
| display_morphosyntax_results( | |
| st.session_state.morphosyntax_result, | |
| lang_code, | |
| morpho_t | |
| ) | |
| elif not sentence_input.strip(): | |
| st.info(morpho_t.get('morpho_initial_message', 'Enter text to begin analysis')) | |
| except Exception as e: | |
| logger.error(f"Error general en display_morphosyntax_interface: {str(e)}") | |
| st.error("Se produjo un error. Por favor, intente de nuevo.") | |
| st.error(f"Detalles del error: {str(e)}") # Añadido para mejor debugging | |
| ############################################################################################################ | |
| def display_morphosyntax_results(result, lang_code, morpho_t): | |
| """ | |
| Muestra los resultados del análisis morfosintáctico. | |
| Args: | |
| result: Resultado del análisis | |
| lang_code: Código del idioma | |
| t: Diccionario de traducciones | |
| """ | |
| # Obtener el diccionario de traducciones morfosintácticas | |
| # morpho_t = t.get('MORPHOSYNTACTIC', {}) | |
| if result is None: | |
| st.warning(morpho_t.get('no_results', 'No results available')) | |
| return | |
| doc = result['doc'] | |
| advanced_analysis = result['advanced_analysis'] | |
| # Mostrar leyenda | |
| st.markdown(f"##### {morpho_t.get('legend', 'Legend: Grammatical categories')}") | |
| legend_html = "<div style='display: flex; flex-wrap: wrap;'>" | |
| for pos, color in POS_COLORS.items(): | |
| if pos in POS_TRANSLATIONS[lang_code]: | |
| legend_html += f"<div style='margin-right: 10px;'><span style='background-color: {color}; padding: 2px 5px;'>{POS_TRANSLATIONS[lang_code][pos]}</span></div>" | |
| legend_html += "</div>" | |
| st.markdown(legend_html, unsafe_allow_html=True) | |
| # Mostrar análisis de palabras repetidas | |
| word_colors = get_repeated_words_colors(doc) | |
| with st.expander(morpho_t.get('repeated_words', 'Repeated words'), expanded=True): | |
| highlighted_text = highlight_repeated_words(doc, word_colors) | |
| st.markdown(highlighted_text, unsafe_allow_html=True) | |
| # Mostrar estructura de oraciones | |
| with st.expander(morpho_t.get('sentence_structure', 'Sentence structure'), expanded=True): | |
| for i, sent_analysis in enumerate(advanced_analysis['sentence_structure']): | |
| sentence_str = ( | |
| f"**{morpho_t.get('sentence', 'Sentence')} {i+1}** " # Aquí está el cambio | |
| f"{morpho_t.get('root', 'Root')}: {sent_analysis['root']} ({sent_analysis['root_pos']}) -- " # Y aquí | |
| f"{morpho_t.get('subjects', 'Subjects')}: {', '.join(sent_analysis['subjects'])} -- " # Y aquí | |
| f"{morpho_t.get('objects', 'Objects')}: {', '.join(sent_analysis['objects'])} -- " # Y aquí | |
| f"{morpho_t.get('verbs', 'Verbs')}: {', '.join(sent_analysis['verbs'])}" # Y aquí | |
| ) | |
| st.markdown(sentence_str) | |
| # Mostrar análisis de categorías gramaticales # Mostrar análisis morfológico | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| with st.expander(morpho_t.get('pos_analysis', 'Part of speech'), expanded=True): | |
| pos_df = pd.DataFrame(advanced_analysis['pos_analysis']) | |
| # Traducir las etiquetas POS a sus nombres en el idioma seleccionado | |
| pos_df['pos'] = pos_df['pos'].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) | |
| # Renombrar las columnas para mayor claridad | |
| pos_df = pos_df.rename(columns={ | |
| 'pos': morpho_t.get('grammatical_category', 'Grammatical category'), | |
| 'count': morpho_t.get('count', 'Count'), | |
| 'percentage': morpho_t.get('percentage', 'Percentage'), | |
| 'examples': morpho_t.get('examples', 'Examples') | |
| }) | |
| # Mostrar el dataframe | |
| st.dataframe(pos_df) | |
| with col2: | |
| with st.expander(morpho_t.get('morphological_analysis', 'Morphological Analysis'), expanded=True): | |
| # 1. Crear el DataFrame inicial | |
| morph_df = pd.DataFrame(advanced_analysis['morphological_analysis']) | |
| # 2. Primero renombrar las columnas usando las traducciones de la interfaz | |
| column_mapping = { | |
| 'text': morpho_t.get('word', 'Word'), | |
| 'lemma': morpho_t.get('lemma', 'Lemma'), | |
| 'pos': morpho_t.get('grammatical_category', 'Grammatical category'), | |
| 'dep': morpho_t.get('dependency', 'Dependency'), | |
| 'morph': morpho_t.get('morphology', 'Morphology') | |
| } | |
| # 3. Aplicar el renombrado | |
| morph_df = morph_df.rename(columns=column_mapping) | |
| # 4. Traducir las categorías gramaticales usando POS_TRANSLATIONS global | |
| grammatical_category = morpho_t.get('grammatical_category', 'Grammatical category') | |
| morph_df[grammatical_category] = morph_df[grammatical_category].map(lambda x: POS_TRANSLATIONS[lang_code].get(x, x)) | |
| # 2.2 Traducir dependencias usando traducciones específicas | |
| dep_translations = { | |
| 'es': { | |
| 'ROOT': 'RAÍZ', 'nsubj': 'sujeto nominal', 'obj': 'objeto', 'iobj': 'objeto indirecto', | |
| 'csubj': 'sujeto clausal', 'ccomp': 'complemento clausal', 'xcomp': 'complemento clausal abierto', | |
| 'obl': 'oblicuo', 'vocative': 'vocativo', 'expl': 'expletivo', 'dislocated': 'dislocado', | |
| 'advcl': 'cláusula adverbial', 'advmod': 'modificador adverbial', 'discourse': 'discurso', | |
| 'aux': 'auxiliar', 'cop': 'cópula', 'mark': 'marcador', 'nmod': 'modificador nominal', | |
| 'appos': 'aposición', 'nummod': 'modificador numeral', 'acl': 'cláusula adjetiva', | |
| 'amod': 'modificador adjetival', 'det': 'determinante', 'clf': 'clasificador', | |
| 'case': 'caso', 'conj': 'conjunción', 'cc': 'coordinante', 'fixed': 'fijo', | |
| 'flat': 'plano', 'compound': 'compuesto', 'list': 'lista', 'parataxis': 'parataxis', | |
| 'orphan': 'huérfano', 'goeswith': 'va con', 'reparandum': 'reparación', 'punct': 'puntuación' | |
| }, | |
| 'en': { | |
| 'ROOT': 'ROOT', 'nsubj': 'nominal subject', 'obj': 'object', | |
| 'iobj': 'indirect object', 'csubj': 'clausal subject', 'ccomp': 'clausal complement', 'xcomp': 'open clausal complement', | |
| 'obl': 'oblique', 'vocative': 'vocative', 'expl': 'expletive', 'dislocated': 'dislocated', 'advcl': 'adverbial clause modifier', | |
| 'advmod': 'adverbial modifier', 'discourse': 'discourse element', 'aux': 'auxiliary', 'cop': 'copula', 'mark': 'marker', | |
| 'nmod': 'nominal modifier', 'appos': 'appositional modifier', 'nummod': 'numeric modifier', 'acl': 'clausal modifier of noun', | |
| 'amod': 'adjectival modifier', 'det': 'determiner', 'clf': 'classifier', 'case': 'case marking', | |
| 'conj': 'conjunct', 'cc': 'coordinating conjunction', 'fixed': 'fixed multiword expression', | |
| 'flat': 'flat multiword expression', 'compound': 'compound', 'list': 'list', 'parataxis': 'parataxis', 'orphan': 'orphan', | |
| 'goeswith': 'goes with', 'reparandum': 'reparandum', 'punct': 'punctuation' | |
| }, | |
| 'fr': { | |
| 'ROOT': 'RACINE', 'nsubj': 'sujet nominal', 'obj': 'objet', 'iobj': 'objet indirect', | |
| 'csubj': 'sujet phrastique', 'ccomp': 'complément phrastique', 'xcomp': 'complément phrastique ouvert', 'obl': 'oblique', | |
| 'vocative': 'vocatif', 'expl': 'explétif', 'dislocated': 'disloqué', 'advcl': 'clause adverbiale', 'advmod': 'modifieur adverbial', | |
| 'discourse': 'élément de discours', 'aux': 'auxiliaire', 'cop': 'copule', 'mark': 'marqueur', 'nmod': 'modifieur nominal', | |
| 'appos': 'apposition', 'nummod': 'modifieur numéral', 'acl': 'clause relative', 'amod': 'modifieur adjectival', 'det': 'déterminant', | |
| 'clf': 'classificateur', 'case': 'marqueur de cas', 'conj': 'conjonction', 'cc': 'coordination', 'fixed': 'expression figée', | |
| 'flat': 'construction plate', 'compound': 'composé', 'list': 'liste', 'parataxis': 'parataxe', 'orphan': 'orphelin', | |
| 'goeswith': 'va avec', 'reparandum': 'réparation', 'punct': 'ponctuation' | |
| } | |
| } | |
| dependency = morpho_t.get('dependency', 'Dependency') | |
| morph_df[dependency] = morph_df[dependency].map(lambda x: dep_translations[lang_code].get(x, x)) | |
| morph_translations = { | |
| 'es': { | |
| 'Gender': 'Género', 'Number': 'Número', 'Case': 'Caso', 'Definite': 'Definido', | |
| 'PronType': 'Tipo de Pronombre', 'Person': 'Persona', 'Mood': 'Modo', | |
| 'Tense': 'Tiempo', 'VerbForm': 'Forma Verbal', 'Voice': 'Voz', | |
| 'Fem': 'Femenino', 'Masc': 'Masculino', 'Sing': 'Singular', 'Plur': 'Plural', | |
| 'Ind': 'Indicativo', 'Sub': 'Subjuntivo', 'Imp': 'Imperativo', 'Inf': 'Infinitivo', | |
| 'Part': 'Participio', 'Ger': 'Gerundio', 'Pres': 'Presente', 'Past': 'Pasado', | |
| 'Fut': 'Futuro', 'Perf': 'Perfecto', 'Imp': 'Imperfecto' | |
| }, | |
| 'en': { | |
| 'Gender': 'Gender', 'Number': 'Number', 'Case': 'Case', 'Definite': 'Definite', 'PronType': 'Pronoun Type', 'Person': 'Person', | |
| 'Mood': 'Mood', 'Tense': 'Tense', 'VerbForm': 'Verb Form', 'Voice': 'Voice', | |
| 'Fem': 'Feminine', 'Masc': 'Masculine', 'Sing': 'Singular', 'Plur': 'Plural', 'Ind': 'Indicative', | |
| 'Sub': 'Subjunctive', 'Imp': 'Imperative', 'Inf': 'Infinitive', 'Part': 'Participle', | |
| 'Ger': 'Gerund', 'Pres': 'Present', 'Past': 'Past', 'Fut': 'Future', 'Perf': 'Perfect', 'Imp': 'Imperfect' | |
| }, | |
| 'fr': { | |
| 'Gender': 'Genre', 'Number': 'Nombre', 'Case': 'Cas', 'Definite': 'Défini', 'PronType': 'Type de Pronom', | |
| 'Person': 'Personne', 'Mood': 'Mode', 'Tense': 'Temps', 'VerbForm': 'Forme Verbale', 'Voice': 'Voix', | |
| 'Fem': 'Féminin', 'Masc': 'Masculin', 'Sing': 'Singulier', 'Plur': 'Pluriel', 'Ind': 'Indicatif', | |
| 'Sub': 'Subjonctif', 'Imp': 'Impératif', 'Inf': 'Infinitif', 'Part': 'Participe', | |
| 'Ger': 'Gérondif', 'Pres': 'Présent', 'Past': 'Passé', 'Fut': 'Futur', 'Perf': 'Parfait', 'Imp': 'Imparfait' | |
| } | |
| } | |
| def translate_morph(morph_string, lang_code): | |
| for key, value in morph_translations[lang_code].items(): | |
| morph_string = morph_string.replace(key, value) | |
| return morph_string | |
| morphology = morpho_t.get('morphology', 'Morphology') | |
| morph_df[morphology] = morph_df[morphology].apply(lambda x: translate_morph(x, lang_code)) | |
| st.dataframe(morph_df) | |
| # Mostrar diagramas de arco | |
| with st.expander(morpho_t.get('arc_diagram', 'Syntactic analysis: Arc diagram'), expanded=True): | |
| sentences = list(doc.sents) | |
| arc_diagrams = [] | |
| for i, sent in enumerate(sentences): | |
| st.subheader(f"{morpho_t.get('sentence', 'Sentence')} {i+1}") | |
| html = displacy.render(sent, style="dep", options={"distance": 100}) | |
| html = html.replace('height="375"', 'height="200"') | |
| html = re.sub(r'<svg[^>]*>', lambda m: m.group(0).replace('height="450"', 'height="300"'), html) | |
| html = re.sub(r'<g [^>]*transform="translate\((\d+),(\d+)\)"', | |
| lambda m: f'<g transform="translate({m.group(1)},50)"', html) | |
| st.write(html, unsafe_allow_html=True) | |
| arc_diagrams.append(html) | |
| # Botón de exportación | |
| # if st.button(morpho_t.get('export_button', 'Export Analysis')): | |
| # pdf_buffer = export_user_interactions(st.session_state.username, 'morphosyntax') | |
| # st.download_button( | |
| # label=morpho_t.get('download_pdf', 'Download PDF'), | |
| # data=pdf_buffer, | |
| # file_name="morphosyntax_analysis.pdf", | |
| # mime="application/pdf" | |
| # ) |