|
|
|
|
|
import streamlit as st |
|
import logging |
|
from ..utils.widget_utils import generate_unique_key |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
from ..database.current_situation_mongo_db import store_current_situation_result |
|
|
|
from ..database.writing_progress_mongo_db import ( |
|
store_writing_baseline, |
|
store_writing_progress, |
|
get_writing_baseline, |
|
get_writing_progress, |
|
get_latest_writing_metrics |
|
) |
|
|
|
from .current_situation_analysis import ( |
|
analyze_text_dimensions, |
|
analyze_clarity, |
|
analyze_vocabulary_diversity, |
|
analyze_cohesion, |
|
analyze_structure, |
|
get_dependency_depths, |
|
normalize_score, |
|
generate_sentence_graphs, |
|
generate_word_connections, |
|
generate_connection_paths, |
|
create_vocabulary_network, |
|
create_syntax_complexity_graph, |
|
create_cohesion_heatmap |
|
) |
|
|
|
|
|
plt.rcParams['font.family'] = 'sans-serif' |
|
plt.rcParams['axes.grid'] = True |
|
plt.rcParams['axes.spines.top'] = False |
|
plt.rcParams['axes.spines.right'] = False |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
TEXT_TYPES = { |
|
'academic_article': { |
|
'name': 'Artículo Académico', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.70, 'target': 0.85}, |
|
'structure': {'min': 0.75, 'target': 0.90}, |
|
'cohesion': {'min': 0.65, 'target': 0.80}, |
|
'clarity': {'min': 0.70, 'target': 0.85} |
|
} |
|
}, |
|
'student_essay': { |
|
'name': 'Trabajo Universitario', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.60, 'target': 0.75}, |
|
'structure': {'min': 0.65, 'target': 0.80}, |
|
'cohesion': {'min': 0.55, 'target': 0.70}, |
|
'clarity': {'min': 0.60, 'target': 0.75} |
|
} |
|
}, |
|
'general_communication': { |
|
'name': 'Comunicación General', |
|
'thresholds': { |
|
'vocabulary': {'min': 0.50, 'target': 0.65}, |
|
'structure': {'min': 0.55, 'target': 0.70}, |
|
'cohesion': {'min': 0.45, 'target': 0.60}, |
|
'clarity': {'min': 0.50, 'target': 0.65} |
|
} |
|
} |
|
} |
|
|
|
|
|
ANALYSIS_DIMENSION_MAPPING = { |
|
'morphosyntactic': { |
|
'primary': ['vocabulary', 'clarity'], |
|
'secondary': ['structure'], |
|
'tools': ['arc_diagrams', 'word_repetition'] |
|
}, |
|
'semantic': { |
|
'primary': ['cohesion', 'structure'], |
|
'secondary': ['vocabulary'], |
|
'tools': ['concept_graphs', 'semantic_networks'] |
|
}, |
|
'discourse': { |
|
'primary': ['cohesion', 'structure'], |
|
'secondary': ['clarity'], |
|
'tools': ['comparative_analysis'] |
|
} |
|
} |
|
|
|
|
|
|
|
def display_current_situation_interface(lang_code, nlp_models, t): |
|
""" |
|
Interfaz con línea base y progreso lado a lado. |
|
""" |
|
|
|
if 'baseline_text' not in st.session_state: |
|
|
|
baseline = get_writing_baseline(st.session_state.username) |
|
st.session_state.baseline_text = baseline['text'] if baseline else "" |
|
st.session_state.baseline_metrics = baseline['metrics'] if baseline else None |
|
|
|
if 'iteration_count' not in st.session_state: |
|
st.session_state.iteration_count = 0 |
|
|
|
try: |
|
st.title("Análisis de Escritura") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
st.markdown("### Línea Base") |
|
baseline_text = st.text_area( |
|
"Texto base", |
|
value=st.session_state.baseline_text, |
|
height=200, |
|
key="baseline_area", |
|
help="Este texto servirá como punto de referencia" |
|
) |
|
|
|
if st.button("Establecer Línea Base", type="primary"): |
|
with st.spinner("Analizando línea base..."): |
|
doc = nlp_models[lang_code](baseline_text) |
|
metrics = analyze_text_dimensions(doc) |
|
|
|
success = store_writing_baseline( |
|
username=st.session_state.username, |
|
metrics=metrics, |
|
text=baseline_text |
|
) |
|
|
|
if success: |
|
st.session_state.baseline_text = baseline_text |
|
st.session_state.baseline_metrics = metrics |
|
st.success("Línea base establecida") |
|
|
|
|
|
display_metrics_column(metrics, "Línea Base") |
|
|
|
|
|
with col2: |
|
st.markdown(f"### Iteración #{st.session_state.iteration_count + 1}") |
|
current_text = st.text_area( |
|
"Texto actual", |
|
height=200, |
|
key="current_area", |
|
help="Escribe la nueva versión de tu texto" |
|
) |
|
|
|
if st.button("Analizar Progreso", type="primary"): |
|
if not st.session_state.baseline_metrics: |
|
st.error("Primero debes establecer una línea base") |
|
return |
|
|
|
with st.spinner("Analizando progreso..."): |
|
doc = nlp_models[lang_code](current_text) |
|
current_metrics = analyze_text_dimensions(doc) |
|
|
|
|
|
st.session_state.iteration_count += 1 |
|
|
|
|
|
store_writing_progress( |
|
username=st.session_state.username, |
|
metrics=current_metrics, |
|
text=current_text |
|
) |
|
|
|
|
|
display_metrics_column(current_metrics, f"Iteración #{st.session_state.iteration_count}") |
|
|
|
|
|
with st.expander("Ver Comparación Visual", expanded=False): |
|
if st.session_state.baseline_metrics and 'current_metrics' in locals(): |
|
baseline_config = prepare_metrics_config(st.session_state.baseline_metrics) |
|
current_config = prepare_metrics_config(current_metrics) |
|
display_radar_chart( |
|
metrics_config=current_config, |
|
thresholds=TEXT_TYPES['student_essay']['thresholds'], |
|
baseline_metrics=st.session_state.baseline_metrics |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en interfaz: {str(e)}") |
|
st.error("Error al cargar la interfaz") |
|
|
|
|
|
|
|
|
|
def display_metrics_column(metrics, title): |
|
"""Muestra columna de métricas con formato consistente""" |
|
st.markdown(f"#### Métricas {title}") |
|
|
|
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: |
|
value = metrics[dimension]['normalized_score'] |
|
if value < 0.6: |
|
status = "⚠️ Por mejorar" |
|
color = "inverse" |
|
elif value < 0.8: |
|
status = "📈 Aceptable" |
|
color = "off" |
|
else: |
|
status = "✅ Óptimo" |
|
color = "normal" |
|
|
|
st.metric( |
|
dimension.title(), |
|
f"{value:.2f}", |
|
status, |
|
delta_color=color |
|
) |
|
|
|
|
|
|
|
def display_baseline_interface(lang_code, nlp_models, t): |
|
"""Interfaz para establecer línea base""" |
|
try: |
|
st.markdown("### Establecer Línea Base") |
|
|
|
text_input = st.text_area( |
|
"Texto para línea base", |
|
height=300, |
|
help="Este texto servirá como punto de referencia para medir tu progreso" |
|
) |
|
|
|
if st.button("Establecer como línea base", type="primary"): |
|
with st.spinner("Analizando texto base..."): |
|
|
|
doc = nlp_models[lang_code](text_input) |
|
metrics = analyze_text_dimensions(doc) |
|
|
|
|
|
success = store_writing_baseline( |
|
username=st.session_state.username, |
|
metrics=metrics, |
|
text=text_input |
|
) |
|
|
|
if success: |
|
st.success("Línea base establecida con éxito") |
|
|
|
metrics_config = prepare_metrics_config(metrics) |
|
display_radar_chart(metrics_config, TEXT_TYPES['student_essay']['thresholds']) |
|
else: |
|
st.error("Error al guardar la línea base") |
|
|
|
except Exception as e: |
|
logger.error(f"Error en interfaz de línea base: {str(e)}") |
|
st.error("Error al establecer línea base") |
|
|
|
|
|
|
|
|
|
|
|
def display_comparison_interface(lang_code, nlp_models, t): |
|
"""Interfaz para comparar progreso""" |
|
try: |
|
|
|
baseline = get_writing_baseline(st.session_state.username) |
|
|
|
if not baseline: |
|
st.warning("Primero debes establecer una línea base") |
|
return |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.markdown("### Línea Base") |
|
st.text_area( |
|
"Texto original", |
|
value=baseline['text'], |
|
disabled=True, |
|
height=200 |
|
) |
|
|
|
with col2: |
|
st.markdown("### Nuevo Texto") |
|
current_text = st.text_area( |
|
"Ingresa el nuevo texto a comparar", |
|
height=200 |
|
) |
|
|
|
if st.button("Analizar progreso", type="primary"): |
|
with st.spinner("Analizando progreso..."): |
|
|
|
doc = nlp_models[lang_code](current_text) |
|
current_metrics = analyze_text_dimensions(doc) |
|
|
|
|
|
display_comparison_results( |
|
baseline_metrics=baseline['metrics'], |
|
current_metrics=current_metrics |
|
) |
|
|
|
|
|
if st.button("Guardar este progreso"): |
|
success = store_writing_progress( |
|
username=st.session_state.username, |
|
metrics=current_metrics, |
|
text=current_text |
|
) |
|
|
|
if success: |
|
st.success("Progreso guardado exitosamente") |
|
else: |
|
st.error("Error al guardar el progreso") |
|
|
|
except Exception as e: |
|
logger.error(f"Error en interfaz de comparación: {str(e)}") |
|
st.error("Error al mostrar comparación") |
|
|
|
|
|
|
|
def display_comparison_results(baseline_metrics, current_metrics): |
|
"""Muestra comparación entre línea base y métricas actuales""" |
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5]) |
|
|
|
with metrics_col: |
|
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: |
|
baseline = baseline_metrics[dimension]['normalized_score'] |
|
current = current_metrics[dimension]['normalized_score'] |
|
delta = current - baseline |
|
|
|
st.metric( |
|
dimension.title(), |
|
f"{current:.2f}", |
|
f"{delta:+.2f}", |
|
delta_color="normal" if delta >= 0 else "inverse" |
|
) |
|
|
|
|
|
if delta < 0: |
|
suggest_improvement_tools(dimension) |
|
|
|
with graph_col: |
|
display_radar_chart_comparison( |
|
baseline_metrics, |
|
current_metrics |
|
) |
|
|
|
|
|
def suggest_improvement_tools(dimension): |
|
"""Sugiere herramientas basadas en la dimensión""" |
|
suggestions = [] |
|
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): |
|
if dimension in mapping['primary']: |
|
suggestions.extend(mapping['tools']) |
|
|
|
st.info(f"Herramientas sugeridas para mejorar {dimension}:") |
|
for tool in suggestions: |
|
st.write(f"- {tool}") |
|
|
|
|
|
|
|
def prepare_metrics_config(metrics, text_type='student_essay'): |
|
""" |
|
Prepara la configuración de métricas en el mismo formato que display_results. |
|
Args: |
|
metrics: Diccionario con las métricas analizadas |
|
text_type: Tipo de texto para los umbrales |
|
Returns: |
|
list: Lista de configuraciones de métricas |
|
""" |
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
return [ |
|
{ |
|
'label': "Vocabulario", |
|
'key': 'vocabulary', |
|
'value': metrics['vocabulary']['normalized_score'], |
|
'help': "Riqueza y variedad del vocabulario", |
|
'thresholds': thresholds['vocabulary'] |
|
}, |
|
{ |
|
'label': "Estructura", |
|
'key': 'structure', |
|
'value': metrics['structure']['normalized_score'], |
|
'help': "Organización y complejidad de oraciones", |
|
'thresholds': thresholds['structure'] |
|
}, |
|
{ |
|
'label': "Cohesión", |
|
'key': 'cohesion', |
|
'value': metrics['cohesion']['normalized_score'], |
|
'help': "Conexión y fluidez entre ideas", |
|
'thresholds': thresholds['cohesion'] |
|
}, |
|
{ |
|
'label': "Claridad", |
|
'key': 'clarity', |
|
'value': metrics['clarity']['normalized_score'], |
|
'help': "Facilidad de comprensión del texto", |
|
'thresholds': thresholds['clarity'] |
|
} |
|
] |
|
|
|
|
|
|
|
def display_results(metrics, text_type=None): |
|
""" |
|
Muestra los resultados del análisis: métricas verticalmente y gráfico radar. |
|
""" |
|
try: |
|
|
|
text_type = text_type or 'student_essay' |
|
|
|
|
|
thresholds = TEXT_TYPES[text_type]['thresholds'] |
|
|
|
|
|
metrics_col, graph_col = st.columns([1, 1.5]) |
|
|
|
|
|
with metrics_col: |
|
metrics_config = [ |
|
{ |
|
'label': "Vocabulario", |
|
'key': 'vocabulary', |
|
'value': metrics['vocabulary']['normalized_score'], |
|
'help': "Riqueza y variedad del vocabulario", |
|
'thresholds': thresholds['vocabulary'] |
|
}, |
|
{ |
|
'label': "Estructura", |
|
'key': 'structure', |
|
'value': metrics['structure']['normalized_score'], |
|
'help': "Organización y complejidad de oraciones", |
|
'thresholds': thresholds['structure'] |
|
}, |
|
{ |
|
'label': "Cohesión", |
|
'key': 'cohesion', |
|
'value': metrics['cohesion']['normalized_score'], |
|
'help': "Conexión y fluidez entre ideas", |
|
'thresholds': thresholds['cohesion'] |
|
}, |
|
{ |
|
'label': "Claridad", |
|
'key': 'clarity', |
|
'value': metrics['clarity']['normalized_score'], |
|
'help': "Facilidad de comprensión del texto", |
|
'thresholds': thresholds['clarity'] |
|
} |
|
] |
|
|
|
|
|
for metric in metrics_config: |
|
value = metric['value'] |
|
if value < metric['thresholds']['min']: |
|
status = "⚠️ Por mejorar" |
|
color = "inverse" |
|
elif value < metric['thresholds']['target']: |
|
status = "📈 Aceptable" |
|
color = "off" |
|
else: |
|
status = "✅ Óptimo" |
|
color = "normal" |
|
|
|
st.metric( |
|
metric['label'], |
|
f"{value:.2f}", |
|
f"{status} (Meta: {metric['thresholds']['target']:.2f})", |
|
delta_color=color, |
|
help=metric['help'] |
|
) |
|
st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) |
|
|
|
|
|
with graph_col: |
|
display_radar_chart(metrics_config, thresholds) |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando resultados: {str(e)}") |
|
st.error("Error al mostrar los resultados") |
|
|
|
|
|
|
|
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): |
|
""" |
|
Muestra el gráfico radar con los resultados. |
|
Args: |
|
metrics_config: Configuración actual de métricas |
|
thresholds: Umbrales para las métricas |
|
baseline_metrics: Métricas de línea base (opcional) |
|
""" |
|
try: |
|
|
|
categories = [m['label'] for m in metrics_config] |
|
values_current = [m['value'] for m in metrics_config] |
|
min_values = [m['thresholds']['min'] for m in metrics_config] |
|
target_values = [m['thresholds']['target'] for m in metrics_config] |
|
|
|
|
|
fig = plt.figure(figsize=(8, 8)) |
|
ax = fig.add_subplot(111, projection='polar') |
|
|
|
|
|
angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] |
|
angles += angles[:1] |
|
values_current += values_current[:1] |
|
min_values += min_values[:1] |
|
target_values += target_values[:1] |
|
|
|
|
|
ax.set_xticks(angles[:-1]) |
|
ax.set_xticklabels(categories, fontsize=10) |
|
circle_ticks = np.arange(0, 1.1, 0.2) |
|
ax.set_yticks(circle_ticks) |
|
ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) |
|
ax.set_ylim(0, 1) |
|
|
|
|
|
ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, |
|
label='Mínimo', alpha=0.5) |
|
ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, |
|
label='Meta', alpha=0.5) |
|
ax.fill_between(angles, target_values, [1]*len(angles), |
|
color='#2ecc71', alpha=0.1) |
|
ax.fill_between(angles, [0]*len(angles), min_values, |
|
color='#e74c3c', alpha=0.1) |
|
|
|
|
|
if baseline_metrics is not None: |
|
values_baseline = [baseline_metrics[m['key']]['normalized_score'] |
|
for m in metrics_config] |
|
values_baseline += values_baseline[:1] |
|
ax.plot(angles, values_baseline, '#888888', linewidth=2, |
|
label='Línea base', linestyle='--') |
|
ax.fill(angles, values_baseline, '#888888', alpha=0.1) |
|
|
|
|
|
label = 'Actual' if baseline_metrics else 'Tu escritura' |
|
color = '#3498db' if baseline_metrics else '#3498db' |
|
|
|
ax.plot(angles, values_current, color, linewidth=2, label=label) |
|
ax.fill(angles, values_current, color, alpha=0.2) |
|
|
|
|
|
legend_handles = [] |
|
if baseline_metrics: |
|
legend_handles.extend([ |
|
plt.Line2D([], [], color='#888888', linestyle='--', |
|
label='Línea base'), |
|
plt.Line2D([], [], color='#3498db', label='Actual') |
|
]) |
|
else: |
|
legend_handles.extend([ |
|
plt.Line2D([], [], color='#3498db', label='Tu escritura') |
|
]) |
|
|
|
legend_handles.extend([ |
|
plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), |
|
plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') |
|
]) |
|
|
|
ax.legend( |
|
handles=legend_handles, |
|
loc='upper right', |
|
bbox_to_anchor=(1.3, 1.1), |
|
fontsize=10, |
|
frameon=True, |
|
facecolor='white', |
|
edgecolor='none', |
|
shadow=True |
|
) |
|
|
|
plt.tight_layout() |
|
st.pyplot(fig) |
|
plt.close() |
|
|
|
except Exception as e: |
|
logger.error(f"Error mostrando gráfico radar: {str(e)}") |
|
st.error("Error al mostrar el gráfico") |
|
|
|
|