Spaces:
Running
Running
| # Importaciones generales | |
| import streamlit as st | |
| from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player | |
| from streamlit_float import * | |
| from streamlit_antd_components import * | |
| from streamlit_option_menu import * | |
| from streamlit_chat import * | |
| import logging | |
| import time | |
| from datetime import datetime | |
| import re | |
| import io | |
| from io import BytesIO | |
| import base64 | |
| import matplotlib.pyplot as plt | |
| import plotly.graph_objects as go | |
| import pandas as pd | |
| import numpy as np | |
| from spacy import displacy | |
| import random | |
| # Configuración del logger | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Importaciones locales | |
| from translations import get_translations | |
| # Importaciones locales | |
| from ..studentact.student_activities_v2 import display_student_progress | |
| # Importaciones directas de los módulos necesarios | |
| from ..auth.auth import authenticate_user, register_user | |
| from ..database.database_oldFromV2 import ( | |
| get_student_data, | |
| store_application_request, | |
| store_morphosyntax_result, | |
| store_semantic_result, | |
| store_discourse_analysis_result, | |
| store_chat_history, | |
| create_admin_user, | |
| create_student_user, | |
| store_user_feedback | |
| ) | |
| from ..admin.admin_ui import admin_page | |
| from ..morphosyntax.morphosyntax_interface import display_morphosyntax_interface | |
| from ..semantic.semantic_interface_68ok import display_semantic_interface | |
| from ..discourse.discourse_interface import display_discourse_interface | |
| # Nueva importación para semantic_float_init | |
| #from ..semantic.semantic_float import semantic_float_init | |
| from ..semantic.semantic_float68ok import semantic_float_init | |
| ############### Iniciar sesión ###################### | |
| def initialize_session_state(): | |
| if 'initialized' not in st.session_state: | |
| st.session_state.clear() | |
| st.session_state.initialized = True | |
| st.session_state.logged_in = False | |
| st.session_state.page = 'login' | |
| st.session_state.username = None | |
| st.session_state.role = None | |
| st.session_state.lang_code = 'es' # Idioma por defecto | |
| def main(): | |
| logger.info(f"Entrando en main() - Página actual: {st.session_state.page}") | |
| if 'nlp_models' not in st.session_state: | |
| st.error("Los modelos NLP no están inicializados. Por favor, reinicie la aplicación.") | |
| return | |
| semantic_float_init() | |
| if st.session_state.page == 'login': | |
| login_register_page() | |
| elif st.session_state.page == 'admin': | |
| logger.info("Mostrando página de admin") | |
| admin_page() | |
| elif st.session_state.page == 'user': | |
| user_page() | |
| else: | |
| logger.warning(f"Página no reconocida: {st.session_state.page}") | |
| st.error(f"Página no reconocida: {st.session_state.page}") | |
| logger.info(f"Saliendo de main() - Estado final de la sesión: {st.session_state}") | |
| ############### Después de iniciar sesión ###################### | |
| def user_page(): | |
| logger.info(f"Entrando en user_page para el usuario: {st.session_state.username}") | |
| if 'user_data' not in st.session_state or time.time() - st.session_state.get('last_data_fetch', 0) > 60: | |
| with st.spinner("Cargando tus datos..."): | |
| try: | |
| st.session_state.user_data = get_student_data(st.session_state.username) | |
| st.session_state.last_data_fetch = time.time() | |
| except Exception as e: | |
| logger.error(f"Error al obtener datos del usuario: {str(e)}") | |
| st.error("Hubo un problema al cargar tus datos. Por favor, intenta recargar la página.") | |
| return | |
| logger.info(f"Idioma actual: {st.session_state.lang_code}") | |
| logger.info(f"Modelos NLP cargados: {'nlp_models' in st.session_state}") | |
| languages = {'Español': 'es', 'English': 'en', 'Français': 'fr'} | |
| if 'lang_code' not in st.session_state: | |
| st.session_state.lang_code = 'es' # Idioma por defecto | |
| elif not isinstance(st.session_state.lang_code, str) or st.session_state.lang_code not in ['es', 'en', 'fr']: | |
| logger.warning(f"Invalid lang_code: {st.session_state.lang_code}. Setting to default 'es'") | |
| st.session_state.lang_code = 'es' | |
| # Obtener traducciones | |
| t = get_translations(st.session_state.lang_code) | |
| # Estilos CSS personalizados (mantener los estilos existentes) | |
| st.markdown(""" | |
| <style> | |
| .stSelectbox > div > div { | |
| padding-top: 0px; | |
| } | |
| .stButton > button { | |
| padding-top: 2px; | |
| margin-top: 0px; | |
| } | |
| div[data-testid="stHorizontalBlock"] > div:nth-child(3) { | |
| display: flex; | |
| justify-content: flex-end; | |
| align-items: center; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Crear un contenedor para la barra superior | |
| with st.container(): | |
| col1, col2, col3 = st.columns([2, 2, 1]) | |
| with col1: | |
| st.markdown(f"<h3 style='margin-bottom: 0; padding-top: 10px;'>{t['welcome']}, {st.session_state.username}</h3>", unsafe_allow_html=True) | |
| with col2: | |
| selected_lang = st.selectbox( | |
| t['select_language'], | |
| list(languages.keys()), | |
| index=list(languages.values()).index(st.session_state.lang_code), | |
| key=f"language_selector_{st.session_state.username}_{st.session_state.lang_code}" | |
| ) | |
| new_lang_code = languages[selected_lang] | |
| if st.session_state.lang_code != new_lang_code: | |
| st.session_state.lang_code = new_lang_code | |
| st.rerun() # Esto recargará la página con el nuevo idioma | |
| with col3: | |
| if st.button(t['logout'], key=f"logout_button_{st.session_state.username}_{st.session_state.lang_code}"): | |
| # Implementación temporal de logout | |
| for key in list(st.session_state.keys()): | |
| del st.session_state[key] | |
| st.rerun() | |
| st.markdown("---") | |
| # Mostrar resumen de análisis | |
| #st.subheader(t['analysis_summary']) | |
| #col1, col2, col3 = st.columns(3) | |
| #col1.metric(t['morpho_analyses'], len(st.session_state.user_data['morphosyntax_analyses'])) | |
| #col2.metric(t['semantic_analyses'], len(st.session_state.user_data['semantic_analyses'])) | |
| #col3.metric(t['discourse_analyses'], len(st.session_state.user_data['discourse_analyses'])) | |
| # Opción para exportar datos | |
| #if st.button(t['export_all_analyses']): | |
| # st.info(t['export_in_progress']) | |
| # Aquí iría la llamada a export_data cuando esté implementada | |
| # export_data(st.session_state.user_data, t) | |
| # Crear las pestañas | |
| tabs = st.tabs([ | |
| t['morpho_tab'], | |
| t['semantic_tab'], | |
| t['discourse_tab'], | |
| t['activities_tab'], | |
| t['feedback_tab'] | |
| ]) | |
| # Usar las pestañas creadas | |
| for i, (tab, func) in enumerate(zip(tabs, [ | |
| display_morphosyntax_interface, | |
| display_semantic_interface, | |
| display_discourse_interface, | |
| display_student_progress, | |
| display_feedback_form | |
| ])): | |
| with tab: | |
| try: | |
| if i < 5: # Para las primeras tres pestañas (análisis) | |
| func(st.session_state.lang_code, st.session_state.nlp_models, t, st.session_state.user_data) | |
| elif i == 3: # Para la pestaña de progreso del estudiante | |
| func(st.session_state.username, st.session_state.lang_code, t, st.session_state.user_data) | |
| else: # Para la pestaña de feedback | |
| func(st.session_state.lang_code, t) | |
| except Exception as e: | |
| st.error(f"Error al cargar la pestaña: {str(e)}") | |
| logger.error(f"Error en la pestaña {i}: {str(e)}", exc_info=True) | |
| logger.debug(f"Translations loaded: {t}") # Log para depuración | |
| logger.info("Finalizada la renderización de user_page") | |
| ##################################### | |
| def login_register_page(): | |
| logger.info("Renderizando página de login/registro") | |
| st.title("AIdeaText") | |
| st.write("Bienvenido. Por favor, inicie sesión o regístrese.") | |
| left_column, right_column = st.columns([1, 3]) | |
| with left_column: | |
| tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"]) | |
| with tab1: | |
| login_form() | |
| with tab2: | |
| register_form() | |
| with right_column: | |
| display_videos_and_info() | |
| ################################################### | |
| def login_form(): | |
| with st.form("login_form"): | |
| username = st.text_input("Correo electrónico") | |
| password = st.text_input("Contraseña", type="password") | |
| submit_button = st.form_submit_button("Iniciar Sesión") | |
| if submit_button: | |
| success, role = authenticate_user(username, password) | |
| if success: | |
| st.session_state.logged_in = True | |
| st.session_state.username = username | |
| st.session_state.role = role | |
| st.session_state.page = 'admin' if role == 'Administrador' else 'user' | |
| st.rerun() | |
| else: | |
| st.error("Credenciales incorrectas") | |
| ################################################### | |
| def register_form(): | |
| st.header("Solicitar prueba de la aplicación") | |
| name = st.text_input("Nombre completo") | |
| email = st.text_input("Correo electrónico institucional") | |
| institution = st.text_input("Institución") | |
| role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"]) | |
| reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?") | |
| if st.button("Enviar solicitud"): | |
| if not name or not email or not institution or not reason: | |
| st.error("Por favor, completa todos los campos.") | |
| elif not is_institutional_email(email): | |
| st.error("Por favor, utiliza un correo electrónico institucional.") | |
| else: | |
| success = store_application_request(name, email, institution, role, reason) | |
| if success: | |
| st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.") | |
| else: | |
| st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.") | |
| ################################################### | |
| def is_institutional_email(email): | |
| forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com'] | |
| return not any(domain in email.lower() for domain in forbidden_domains) | |
| ################################################### | |
| def display_videos_and_info(): | |
| st.header("Videos: pitch, demos, entrevistas, otros") | |
| videos = { | |
| "Presentación en PyCon Colombia, Medellín, 2024": "https://www.youtube.com/watch?v=Jn545-IKx5Q", | |
| "Presentación fundación Ser Maaestro": "https://www.youtube.com/watch?v=imc4TI1q164", | |
| "Pitch IFE Explora": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s", | |
| "Entrevista Dr. Guillermo Ruíz": "https://www.youtube.com/watch?v=_ch8cRja3oc", | |
| "Demo versión desktop": "https://www.youtube.com/watch?v=nP6eXbog-ZY" | |
| } | |
| selected_title = st.selectbox("Selecciona un video tutorial:", list(videos.keys())) | |
| if selected_title in videos: | |
| try: | |
| st_player(videos[selected_title]) | |
| except Exception as e: | |
| st.error(f"Error al cargar el video: {str(e)}") | |
| st.markdown(""" | |
| ## Novedades de la versión actual | |
| - Nueva función de análisis semántico | |
| - Soporte para múltiples idiomas | |
| - Interfaz mejorada para una mejor experiencia de usuario | |
| """) | |
| def display_feedback_form(lang_code, t): | |
| logging.info(f"display_feedback_form called with lang_code: {lang_code}") | |
| st.header(t['title']) | |
| name = st.text_input(t['name'], key=f"feedback_name_{lang_code}") | |
| email = st.text_input(t['email'], key=f"feedback_email_{lang_code}") | |
| feedback = st.text_area(t['feedback'], key=f"feedback_text_{lang_code}") | |
| if st.button(t['submit'], key=f"feedback_submit_{lang_code}"): | |
| if name and email and feedback: | |
| if store_user_feedback(st.session_state.username, name, email, feedback): | |
| st.success(t['success']) | |
| else: | |
| st.error(t['error']) | |
| else: | |
| st.warning("Por favor, completa todos los campos.") | |
| ''' | |
| def display_student_progress(username, lang_code, t): | |
| student_data = get_student_data(username) | |
| if student_data is None or len(student_data['entries']) == 0: | |
| st.warning("No se encontraron datos para este estudiante.") | |
| st.info("Intenta realizar algunos análisis de texto primero.") | |
| return | |
| st.title(f"Progreso de {username}") | |
| with st.expander("Resumen de Actividades y Progreso", expanded=True): | |
| # Resumen de actividades | |
| total_entries = len(student_data['entries']) | |
| st.write(f"Total de análisis realizados: {total_entries}") | |
| # Gráfico de tipos de análisis | |
| analysis_types = [entry['analysis_type'] for entry in student_data['entries']] | |
| analysis_counts = pd.Series(analysis_types).value_counts() | |
| fig, ax = plt.subplots() | |
| analysis_counts.plot(kind='bar', ax=ax) | |
| ax.set_title("Tipos de análisis realizados") | |
| ax.set_xlabel("Tipo de análisis") | |
| ax.set_ylabel("Cantidad") | |
| st.pyplot(fig) | |
| # Progreso a lo largo del tiempo | |
| dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']] | |
| analysis_counts = pd.Series(dates).value_counts().sort_index() | |
| fig, ax = plt.subplots() | |
| analysis_counts.plot(kind='line', ax=ax) | |
| ax.set_title("Análisis realizados a lo largo del tiempo") | |
| ax.set_xlabel("Fecha") | |
| ax.set_ylabel("Cantidad de análisis") | |
| st.pyplot(fig) | |
| ########################################################## | |
| with st.expander("Histórico de Análisis Morfosintácticos"): | |
| morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax'] | |
| for entry in morphosyntax_entries: | |
| st.subheader(f"Análisis del {entry['timestamp']}") | |
| if entry['arc_diagrams']: | |
| st.write(entry['arc_diagrams'][0], unsafe_allow_html=True) | |
| ########################################################## | |
| with st.expander("Histórico de Análisis Semánticos"): | |
| semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic'] | |
| for entry in semantic_entries: | |
| st.subheader(f"Análisis del {entry['timestamp']}") | |
| # Mostrar conceptos clave | |
| if 'key_concepts' in entry: | |
| st.write("Conceptos clave:") | |
| concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']]) | |
| #st.write("Conceptos clave:") | |
| #st.write(concepts_str) | |
| st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str}</div>", unsafe_allow_html=True) | |
| # Mostrar gráfico | |
| if 'graph' in entry: | |
| try: | |
| img_bytes = base64.b64decode(entry['graph']) | |
| st.image(img_bytes, caption="Gráfico de relaciones conceptuales") | |
| except Exception as e: | |
| st.error(f"No se pudo mostrar el gráfico: {str(e)}") | |
| ########################################################## | |
| with st.expander("Histórico de Análisis Discursivos"): | |
| discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse'] | |
| for entry in discourse_entries: | |
| st.subheader(f"Análisis del {entry['timestamp']}") | |
| # Mostrar conceptos clave para ambos documentos | |
| if 'key_concepts1' in entry: | |
| concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']]) | |
| st.write("Conceptos clave del documento 1:") | |
| #st.write(concepts_str1) | |
| st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str1}</div>", unsafe_allow_html=True) | |
| if 'key_concepts2' in entry: | |
| concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']]) | |
| st.write("Conceptos clave del documento 2:") | |
| #st.write(concepts_str2) | |
| st.markdown(f"<div style='background-color: #f0f2f6; padding: 10px; border-radius: 5px;'>{concepts_str2}</div>", unsafe_allow_html=True) | |
| try: | |
| if 'combined_graph' in entry and entry['combined_graph']: | |
| img_bytes = base64.b64decode(entry['combined_graph']) | |
| st.image(img_bytes) | |
| elif 'graph1' in entry and 'graph2' in entry: | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| if entry['graph1']: | |
| img_bytes1 = base64.b64decode(entry['graph1']) | |
| st.image(img_bytes1) | |
| with col2: | |
| if entry['graph2']: | |
| img_bytes2 = base64.b64decode(entry['graph2']) | |
| st.image(img_bytes2) | |
| else: | |
| st.write("No se encontraron gráficos para este análisis.") | |
| except Exception as e: | |
| st.error(f"No se pudieron mostrar los gráficos: {str(e)}") | |
| st.write("Datos de los gráficos (para depuración):") | |
| if 'graph1' in entry: | |
| st.write("Graph 1:", entry['graph1'][:100] + "...") | |
| if 'graph2' in entry: | |
| st.write("Graph 2:", entry['graph2'][:100] + "...") | |
| if 'combined_graph' in entry: | |
| st.write("Combined Graph:", entry['combined_graph'][:100] + "...") | |
| ########################################################## | |
| with st.expander("Histórico de Conversaciones con el ChatBot"): | |
| if 'chat_history' in student_data: | |
| for i, chat in enumerate(student_data['chat_history']): | |
| st.subheader(f"Conversación {i+1} - {chat['timestamp']}") | |
| for message in chat['messages']: | |
| if message['role'] == 'user': | |
| st.write("Usuario: " + message['content']) | |
| else: | |
| st.write("Asistente: " + message['content']) | |
| st.write("---") | |
| else: | |
| st.write("No se encontraron conversaciones con el ChatBot.") | |
| # Añadir logs para depuración | |
| if st.checkbox("Mostrar datos de depuración"): | |
| st.write("Datos del estudiante (para depuración):") | |
| st.json(student_data) | |
| ''' | |
| # Definición de __all__ para especificar qué se exporta | |
| __all__ = ['main', 'login_register_page', 'initialize_session_state'] | |
| # Bloque de ejecución condicional | |
| if __name__ == "__main__": | |
| main() | |