Spaces:
Running
Running
| # modules/studentact/current_situation_interface-vOK.py | |
| import streamlit as st | |
| import logging | |
| from ..utils.widget_utils import generate_unique_key | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from ..database.current_situation_mongo_db import store_current_situation_result | |
| from .current_situation_analysis import ( | |
| analyze_text_dimensions, | |
| analyze_clarity, | |
| analyze_vocabulary_diversity, | |
| analyze_cohesion, | |
| analyze_structure, | |
| get_dependency_depths, | |
| normalize_score, | |
| generate_sentence_graphs, | |
| generate_word_connections, | |
| generate_connection_paths, | |
| create_vocabulary_network, | |
| create_syntax_complexity_graph, | |
| create_cohesion_heatmap, | |
| ) | |
| # Configuración del estilo de matplotlib para el gráfico de radar | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['axes.grid'] = True | |
| plt.rcParams['axes.spines.top'] = False | |
| plt.rcParams['axes.spines.right'] = False | |
| logger = logging.getLogger(__name__) | |
| #################################### | |
| TEXT_TYPES = { | |
| 'academic_article': { | |
| 'name': 'Artículo Académico', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.70, 'target': 0.85}, | |
| 'structure': {'min': 0.75, 'target': 0.90}, | |
| 'cohesion': {'min': 0.65, 'target': 0.80}, | |
| 'clarity': {'min': 0.70, 'target': 0.85} | |
| } | |
| }, | |
| 'student_essay': { | |
| 'name': 'Trabajo Universitario', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.60, 'target': 0.75}, | |
| 'structure': {'min': 0.65, 'target': 0.80}, | |
| 'cohesion': {'min': 0.55, 'target': 0.70}, | |
| 'clarity': {'min': 0.60, 'target': 0.75} | |
| } | |
| }, | |
| 'general_communication': { | |
| 'name': 'Comunicación General', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.50, 'target': 0.65}, | |
| 'structure': {'min': 0.55, 'target': 0.70}, | |
| 'cohesion': {'min': 0.45, 'target': 0.60}, | |
| 'clarity': {'min': 0.50, 'target': 0.65} | |
| } | |
| } | |
| } | |
| #################################### | |
| def display_current_situation_interface(lang_code, nlp_models, t): | |
| """ | |
| Interfaz simplificada con gráfico de radar para visualizar métricas. | |
| """ | |
| # Inicializar estados si no existen | |
| if 'text_input' not in st.session_state: | |
| st.session_state.text_input = "" | |
| if 'text_area' not in st.session_state: # Añadir inicialización de text_area | |
| st.session_state.text_area = "" | |
| if 'show_results' not in st.session_state: | |
| st.session_state.show_results = False | |
| if 'current_doc' not in st.session_state: | |
| st.session_state.current_doc = None | |
| if 'current_metrics' not in st.session_state: | |
| st.session_state.current_metrics = None | |
| try: | |
| # Container principal con dos columnas | |
| with st.container(): | |
| input_col, results_col = st.columns([1,2]) | |
| with input_col: | |
| # Text area con manejo de estado | |
| text_input = st.text_area( | |
| t.get('input_prompt', "Escribe o pega tu texto aquí:"), | |
| height=400, | |
| key="text_area", | |
| value=st.session_state.text_input, | |
| help="Este texto será analizado para darte recomendaciones personalizadas" | |
| ) | |
| # Función para manejar cambios de texto | |
| if text_input != st.session_state.text_input: | |
| st.session_state.text_input = text_input | |
| st.session_state.show_results = False | |
| if st.button( | |
| t.get('analyze_button', "Analizar mi escritura"), | |
| type="primary", | |
| disabled=not text_input.strip(), | |
| use_container_width=True, | |
| ): | |
| try: | |
| with st.spinner(t.get('processing', "Analizando...")): | |
| doc = nlp_models[lang_code](text_input) | |
| metrics = analyze_text_dimensions(doc) | |
| storage_success = store_current_situation_result( | |
| username=st.session_state.username, | |
| text=text_input, | |
| metrics=metrics, | |
| feedback=None | |
| ) | |
| if not storage_success: | |
| logger.warning("No se pudo guardar el análisis en la base de datos") | |
| st.session_state.current_doc = doc | |
| st.session_state.current_metrics = metrics | |
| st.session_state.show_results = True | |
| except Exception as e: | |
| logger.error(f"Error en análisis: {str(e)}") | |
| st.error(t.get('analysis_error', "Error al analizar el texto")) | |
| # Mostrar resultados en la columna derecha | |
| with results_col: | |
| if st.session_state.show_results and st.session_state.current_metrics is not None: | |
| # Primero los radio buttons para tipo de texto | |
| st.markdown("### Tipo de texto") | |
| text_type = st.radio( | |
| "", | |
| options=list(TEXT_TYPES.keys()), | |
| format_func=lambda x: TEXT_TYPES[x]['name'], | |
| horizontal=True, | |
| key="text_type_radio", | |
| help="Selecciona el tipo de texto para ajustar los criterios de evaluación" | |
| ) | |
| st.session_state.current_text_type = text_type | |
| # Luego mostrar los resultados | |
| display_results( | |
| metrics=st.session_state.current_metrics, | |
| text_type=text_type | |
| ) | |
| except Exception as e: | |
| logger.error(f"Error en interfaz principal: {str(e)}") | |
| st.error("Ocurrió un error al cargar la interfaz") | |
| ###################################3333 | |
| def display_results(metrics, text_type=None): | |
| """ | |
| Muestra los resultados del análisis: métricas verticalmente y gráfico radar. | |
| """ | |
| try: | |
| # Usar valor por defecto si no se especifica tipo | |
| text_type = text_type or 'student_essay' | |
| # Obtener umbrales según el tipo de texto | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| # Crear dos columnas para las métricas y el gráfico | |
| metrics_col, graph_col = st.columns([1, 1.5]) | |
| # Columna de métricas | |
| with metrics_col: | |
| metrics_config = [ | |
| { | |
| 'label': "Vocabulario", | |
| 'key': 'vocabulary', | |
| 'value': metrics['vocabulary']['normalized_score'], | |
| 'help': "Riqueza y variedad del vocabulario", | |
| 'thresholds': thresholds['vocabulary'] | |
| }, | |
| { | |
| 'label': "Estructura", | |
| 'key': 'structure', | |
| 'value': metrics['structure']['normalized_score'], | |
| 'help': "Organización y complejidad de oraciones", | |
| 'thresholds': thresholds['structure'] | |
| }, | |
| { | |
| 'label': "Cohesión", | |
| 'key': 'cohesion', | |
| 'value': metrics['cohesion']['normalized_score'], | |
| 'help': "Conexión y fluidez entre ideas", | |
| 'thresholds': thresholds['cohesion'] | |
| }, | |
| { | |
| 'label': "Claridad", | |
| 'key': 'clarity', | |
| 'value': metrics['clarity']['normalized_score'], | |
| 'help': "Facilidad de comprensión del texto", | |
| 'thresholds': thresholds['clarity'] | |
| } | |
| ] | |
| # Mostrar métricas | |
| for metric in metrics_config: | |
| value = metric['value'] | |
| if value < metric['thresholds']['min']: | |
| status = "⚠️ Por mejorar" | |
| color = "inverse" | |
| elif value < metric['thresholds']['target']: | |
| status = "📈 Aceptable" | |
| color = "off" | |
| else: | |
| status = "✅ Óptimo" | |
| color = "normal" | |
| st.metric( | |
| metric['label'], | |
| f"{value:.2f}", | |
| f"{status} (Meta: {metric['thresholds']['target']:.2f})", | |
| delta_color=color, | |
| help=metric['help'] | |
| ) | |
| st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) | |
| # Gráfico radar en la columna derecha | |
| with graph_col: | |
| display_radar_chart(metrics_config, thresholds) | |
| except Exception as e: | |
| logger.error(f"Error mostrando resultados: {str(e)}") | |
| st.error("Error al mostrar los resultados") | |
| ###################################### | |
| def display_radar_chart(metrics_config, thresholds): | |
| """ | |
| Muestra el gráfico radar con los resultados. | |
| """ | |
| try: | |
| # Preparar datos para el gráfico | |
| categories = [m['label'] for m in metrics_config] | |
| values_user = [m['value'] for m in metrics_config] | |
| min_values = [m['thresholds']['min'] for m in metrics_config] | |
| target_values = [m['thresholds']['target'] for m in metrics_config] | |
| # Crear y configurar gráfico | |
| fig = plt.figure(figsize=(8, 8)) | |
| ax = fig.add_subplot(111, projection='polar') | |
| # Configurar radar | |
| angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] | |
| angles += angles[:1] | |
| values_user += values_user[:1] | |
| min_values += min_values[:1] | |
| target_values += target_values[:1] | |
| # Configurar ejes | |
| ax.set_xticks(angles[:-1]) | |
| ax.set_xticklabels(categories, fontsize=10) | |
| circle_ticks = np.arange(0, 1.1, 0.2) | |
| ax.set_yticks(circle_ticks) | |
| ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
| ax.set_ylim(0, 1) | |
| # Dibujar áreas de umbrales | |
| ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, label='Mínimo', alpha=0.5) | |
| ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, label='Meta', alpha=0.5) | |
| ax.fill_between(angles, target_values, [1]*len(angles), color='#2ecc71', alpha=0.1) | |
| ax.fill_between(angles, [0]*len(angles), min_values, color='#e74c3c', alpha=0.1) | |
| # Dibujar valores del usuario | |
| ax.plot(angles, values_user, '#3498db', linewidth=2, label='Tu escritura') | |
| ax.fill(angles, values_user, '#3498db', alpha=0.2) | |
| # Ajustar leyenda | |
| ax.legend( | |
| loc='upper right', | |
| bbox_to_anchor=(1.3, 1.1), # Cambiado de (0.1, 0.1) a (1.3, 1.1) | |
| fontsize=10, | |
| frameon=True, | |
| facecolor='white', | |
| edgecolor='none', | |
| shadow=True | |
| ) | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| plt.close() | |
| except Exception as e: | |
| logger.error(f"Error mostrando gráfico radar: {str(e)}") | |
| st.error("Error al mostrar el gráfico") | |
| ####################################### |