Spaces:
Running
Running
| # modules/studentact/current_situation_interface.py | |
| import streamlit as st | |
| import logging | |
| from ..utils.widget_utils import generate_unique_key | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from ..database.current_situation_mongo_db import store_current_situation_result | |
| from ..database.writing_progress_mongo_db import ( | |
| store_writing_baseline, | |
| store_writing_progress, | |
| get_writing_baseline, | |
| get_writing_progress, | |
| get_latest_writing_metrics | |
| ) | |
| from .current_situation_analysis import ( | |
| analyze_text_dimensions, | |
| analyze_clarity, | |
| analyze_vocabulary_diversity, | |
| analyze_cohesion, | |
| analyze_structure, | |
| get_dependency_depths, | |
| normalize_score, | |
| generate_sentence_graphs, | |
| generate_word_connections, | |
| generate_connection_paths, | |
| create_vocabulary_network, | |
| create_syntax_complexity_graph, | |
| create_cohesion_heatmap | |
| ) | |
| # Configuración del estilo de matplotlib para el gráfico de radar | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['axes.grid'] = True | |
| plt.rcParams['axes.spines.top'] = False | |
| plt.rcParams['axes.spines.right'] = False | |
| logger = logging.getLogger(__name__) | |
| #################################### | |
| TEXT_TYPES = { | |
| 'academic_article': { | |
| 'name': 'Artículo Académico', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.70, 'target': 0.85}, | |
| 'structure': {'min': 0.75, 'target': 0.90}, | |
| 'cohesion': {'min': 0.65, 'target': 0.80}, | |
| 'clarity': {'min': 0.70, 'target': 0.85} | |
| } | |
| }, | |
| 'student_essay': { | |
| 'name': 'Trabajo Universitario', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.60, 'target': 0.75}, | |
| 'structure': {'min': 0.65, 'target': 0.80}, | |
| 'cohesion': {'min': 0.55, 'target': 0.70}, | |
| 'clarity': {'min': 0.60, 'target': 0.75} | |
| } | |
| }, | |
| 'general_communication': { | |
| 'name': 'Comunicación General', | |
| 'thresholds': { | |
| 'vocabulary': {'min': 0.50, 'target': 0.65}, | |
| 'structure': {'min': 0.55, 'target': 0.70}, | |
| 'cohesion': {'min': 0.45, 'target': 0.60}, | |
| 'clarity': {'min': 0.50, 'target': 0.65} | |
| } | |
| } | |
| } | |
| #################################### | |
| ANALYSIS_DIMENSION_MAPPING = { | |
| 'morphosyntactic': { | |
| 'primary': ['vocabulary', 'clarity'], | |
| 'secondary': ['structure'], | |
| 'tools': ['arc_diagrams', 'word_repetition'] | |
| }, | |
| 'semantic': { | |
| 'primary': ['cohesion', 'structure'], | |
| 'secondary': ['vocabulary'], | |
| 'tools': ['concept_graphs', 'semantic_networks'] | |
| }, | |
| 'discourse': { | |
| 'primary': ['cohesion', 'structure'], | |
| 'secondary': ['clarity'], | |
| 'tools': ['comparative_analysis'] | |
| } | |
| } | |
| ############################################################################## | |
| # FUNCIÓN PRINCIPAL | |
| ############################################################################## | |
| def display_current_situation_interface(lang_code, nlp_models, t): | |
| """ | |
| TAB: | |
| - Expander con radio para tipo de texto | |
| Contenedor-1 con expanders: | |
| - Expander "Métricas de la línea base" | |
| - Expander "Métricas de la iteración" | |
| Contenedor-2 (2 columnas): | |
| - Col1: Texto base | |
| - Col2: Texto iteración | |
| Al final, Recomendaciones en un expander (una sola “fila”). | |
| """ | |
| # --- Inicializar session_state --- | |
| if 'base_text' not in st.session_state: | |
| st.session_state.base_text = "" | |
| if 'iter_text' not in st.session_state: | |
| st.session_state.iter_text = "" | |
| if 'base_metrics' not in st.session_state: | |
| st.session_state.base_metrics = {} | |
| if 'iter_metrics' not in st.session_state: | |
| st.session_state.iter_metrics = {} | |
| if 'show_base' not in st.session_state: | |
| st.session_state.show_base = False | |
| if 'show_iter' not in st.session_state: | |
| st.session_state.show_iter = False | |
| # Creamos un tab | |
| tabs = st.tabs(["Análisis de Texto"]) | |
| with tabs[0]: | |
| # [1] Expander con radio para seleccionar tipo de texto | |
| with st.expander("Selecciona el tipo de texto", expanded=True): | |
| text_type = st.radio( | |
| "¿Qué tipo de texto quieres analizar?", | |
| options=list(TEXT_TYPES.keys()), | |
| format_func=lambda x: TEXT_TYPES[x]['name'], | |
| index=0 | |
| ) | |
| st.session_state.current_text_type = text_type | |
| st.markdown("---") | |
| # --------------------------------------------------------------------- | |
| # CONTENEDOR-1: Expanders para métricas base e iteración | |
| # --------------------------------------------------------------------- | |
| with st.container(): | |
| # --- Expander para la línea base --- | |
| with st.expander("Métricas de la línea base", expanded=False): | |
| if st.session_state.show_base and st.session_state.base_metrics: | |
| # Mostramos los valores reales | |
| display_metrics_in_one_row(st.session_state.base_metrics, text_type) | |
| else: | |
| # Mostramos la maqueta vacía | |
| display_empty_metrics_row() | |
| # --- Expander para la iteración --- | |
| with st.expander("Métricas de la iteración", expanded=False): | |
| if st.session_state.show_iter and st.session_state.iter_metrics: | |
| display_metrics_in_one_row(st.session_state.iter_metrics, text_type) | |
| else: | |
| display_empty_metrics_row() | |
| st.markdown("---") | |
| # --------------------------------------------------------------------- | |
| # CONTENEDOR-2: 2 columnas (texto base | texto iteración) | |
| # --------------------------------------------------------------------- | |
| with st.container(): | |
| col_left, col_right = st.columns(2) | |
| # Columna izquierda: Texto base | |
| with col_left: | |
| st.markdown("**Texto base**") | |
| text_base = st.text_area( | |
| label="", | |
| value=st.session_state.base_text, | |
| key="text_base_area", | |
| placeholder="Pega aquí tu texto base", | |
| ) | |
| if st.button("Analizar Base"): | |
| with st.spinner("Analizando texto base..."): | |
| doc = nlp_models[lang_code](text_base) | |
| metrics = analyze_text_dimensions(doc) | |
| st.session_state.base_text = text_base | |
| st.session_state.base_metrics = metrics | |
| st.session_state.show_base = True | |
| # Al analizar base, reiniciamos la iteración | |
| st.session_state.show_iter = False | |
| # Columna derecha: Texto iteración | |
| with col_right: | |
| st.markdown("**Texto de iteración**") | |
| text_iter = st.text_area( | |
| label="", | |
| value=st.session_state.iter_text, | |
| key="text_iter_area", | |
| placeholder="Edita y mejora tu texto...", | |
| disabled=not st.session_state.show_base | |
| ) | |
| if st.button("Analizar Iteración", disabled=not st.session_state.show_base): | |
| with st.spinner("Analizando iteración..."): | |
| doc = nlp_models[lang_code](text_iter) | |
| metrics = analyze_text_dimensions(doc) | |
| st.session_state.iter_text = text_iter | |
| st.session_state.iter_metrics = metrics | |
| st.session_state.show_iter = True | |
| # --------------------------------------------------------------------- | |
| # Recomendaciones al final en un expander (una sola “fila”) | |
| # --------------------------------------------------------------------- | |
| if st.session_state.show_iter: | |
| with st.expander("Recomendaciones", expanded=False): | |
| reco_list = [] | |
| for dimension, values in st.session_state.iter_metrics.items(): | |
| score = values['normalized_score'] | |
| target = TEXT_TYPES[text_type]['thresholds'][dimension]['target'] | |
| if score < target: | |
| # Aquí, en lugar de get_dimension_suggestions, unificamos con: | |
| suggestions = suggest_improvement_tools_list(dimension) | |
| reco_list.extend(suggestions) | |
| if reco_list: | |
| # Todas en una sola línea | |
| st.write(" | ".join(reco_list)) | |
| else: | |
| st.info("¡No hay recomendaciones! Todas las métricas superan la meta.") | |
| #Funciones de visualización ################################## | |
| ############################################################ | |
| # Funciones de visualización para las métricas | |
| ############################################################ | |
| def display_metrics_in_one_row(metrics, text_type): | |
| """ | |
| Muestra las cuatro dimensiones (Vocabulario, Estructura, Cohesión, Claridad) | |
| en una sola línea, usando 4 columnas con ancho uniforme. | |
| """ | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| dimensions = ["vocabulary", "structure", "cohesion", "clarity"] | |
| col1, col2, col3, col4 = st.columns([1,1,1,1]) | |
| cols = [col1, col2, col3, col4] | |
| for dim, col in zip(dimensions, cols): | |
| score = metrics[dim]['normalized_score'] | |
| target = thresholds[dim]['target'] | |
| min_val = thresholds[dim]['min'] | |
| if score < min_val: | |
| status = "⚠️ Por mejorar" | |
| color = "inverse" | |
| elif score < target: | |
| status = "📈 Aceptable" | |
| color = "off" | |
| else: | |
| status = "✅ Óptimo" | |
| color = "normal" | |
| with col: | |
| col.metric( | |
| label=dim.capitalize(), | |
| value=f"{score:.2f}", | |
| delta=f"{status} (Meta: {target:.2f})", | |
| delta_color=color, | |
| border=True | |
| ) | |
| # ------------------------------------------------------------------------- | |
| # Función que muestra una fila de 4 columnas “vacías” | |
| # ------------------------------------------------------------------------- | |
| def display_empty_metrics_row(): | |
| """ | |
| Muestra una fila de 4 columnas vacías (Vocabulario, Estructura, Cohesión, Claridad). | |
| Cada columna se dibuja con st.metric en blanco (“-”). | |
| """ | |
| empty_cols = st.columns([1,1,1,1]) | |
| labels = ["Vocabulario", "Estructura", "Cohesión", "Claridad"] | |
| for col, lbl in zip(empty_cols, labels): | |
| with col: | |
| col.metric( | |
| label=lbl, | |
| value="-", | |
| delta="", | |
| border=True | |
| ) | |
| #################################################################### | |
| def display_metrics_analysis(metrics, text_type=None): | |
| """ | |
| Muestra los resultados del análisis: métricas verticalmente y gráfico radar. | |
| """ | |
| try: | |
| # Usar valor por defecto si no se especifica tipo | |
| text_type = text_type or 'student_essay' | |
| # Obtener umbrales según el tipo de texto | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| # Crear dos columnas para las métricas y el gráfico | |
| metrics_col, graph_col = st.columns([1, 1.5]) | |
| # Columna de métricas | |
| with metrics_col: | |
| metrics_config = [ | |
| { | |
| 'label': "Vocabulario", | |
| 'key': 'vocabulary', | |
| 'value': metrics['vocabulary']['normalized_score'], | |
| 'help': "Riqueza y variedad del vocabulario", | |
| 'thresholds': thresholds['vocabulary'] | |
| }, | |
| { | |
| 'label': "Estructura", | |
| 'key': 'structure', | |
| 'value': metrics['structure']['normalized_score'], | |
| 'help': "Organización y complejidad de oraciones", | |
| 'thresholds': thresholds['structure'] | |
| }, | |
| { | |
| 'label': "Cohesión", | |
| 'key': 'cohesion', | |
| 'value': metrics['cohesion']['normalized_score'], | |
| 'help': "Conexión y fluidez entre ideas", | |
| 'thresholds': thresholds['cohesion'] | |
| }, | |
| { | |
| 'label': "Claridad", | |
| 'key': 'clarity', | |
| 'value': metrics['clarity']['normalized_score'], | |
| 'help': "Facilidad de comprensión del texto", | |
| 'thresholds': thresholds['clarity'] | |
| } | |
| ] | |
| # Mostrar métricas | |
| for metric in metrics_config: | |
| value = metric['value'] | |
| if value < metric['thresholds']['min']: | |
| status = "⚠️ Por mejorar" | |
| color = "inverse" | |
| elif value < metric['thresholds']['target']: | |
| status = "📈 Aceptable" | |
| color = "off" | |
| else: | |
| status = "✅ Óptimo" | |
| color = "normal" | |
| st.metric( | |
| metric['label'], | |
| f"{value:.2f}", | |
| f"{status} (Meta: {metric['thresholds']['target']:.2f})", | |
| delta_color=color, | |
| help=metric['help'] | |
| ) | |
| st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) | |
| except Exception as e: | |
| logger.error(f"Error mostrando resultados: {str(e)}") | |
| st.error("Error al mostrar los resultados") | |
| def display_comparison_results(baseline_metrics, current_metrics): | |
| """Muestra comparación entre línea base y métricas actuales""" | |
| # Crear columnas para métricas y gráfico | |
| metrics_col, graph_col = st.columns([1, 1.5]) | |
| with metrics_col: | |
| for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']: | |
| baseline = baseline_metrics[dimension]['normalized_score'] | |
| current = current_metrics[dimension]['normalized_score'] | |
| delta = current - baseline | |
| st.metric( | |
| dimension.title(), | |
| f"{current:.2f}", | |
| f"{delta:+.2f}", | |
| delta_color="normal" if delta >= 0 else "inverse" | |
| ) | |
| # Sugerir herramientas de mejora | |
| if delta < 0: | |
| suggest_improvement_tools(dimension) | |
| with graph_col: | |
| display_radar_chart_comparison( | |
| baseline_metrics, | |
| current_metrics | |
| ) | |
| def display_metrics_and_suggestions(metrics, text_type, title, show_suggestions=False): | |
| """ | |
| Muestra métricas y opcionalmente sugerencias de mejora. | |
| Args: | |
| metrics: Diccionario con las métricas analizadas | |
| text_type: Tipo de texto seleccionado | |
| title: Título para las métricas ("Base" o "Iteración") | |
| show_suggestions: Booleano para mostrar sugerencias | |
| """ | |
| try: | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| st.markdown(f"### Métricas {title}") | |
| for dimension, values in metrics.items(): | |
| score = values['normalized_score'] | |
| target = thresholds[dimension]['target'] | |
| min_val = thresholds[dimension]['min'] | |
| # Determinar estado y color | |
| if score < min_val: | |
| status = "⚠️ Por mejorar" | |
| color = "inverse" | |
| elif score < target: | |
| status = "📈 Aceptable" | |
| color = "off" | |
| else: | |
| status = "✅ Óptimo" | |
| color = "normal" | |
| # Mostrar métrica | |
| st.metric( | |
| dimension.title(), | |
| f"{score:.2f}", | |
| f"{status} (Meta: {target:.2f})", | |
| delta_color=color, | |
| help=f"Meta: {target:.2f}, Mínimo: {min_val:.2f}" | |
| ) | |
| # Mostrar sugerencias si es necesario | |
| if show_suggestions and score < target: | |
| suggest_improvement_tools(dimension) | |
| # Agregar espacio entre métricas | |
| st.markdown("<div style='margin-bottom: 0.5rem;'></div>", unsafe_allow_html=True) | |
| except Exception as e: | |
| logger.error(f"Error mostrando métricas: {str(e)}") | |
| st.error("Error al mostrar métricas") | |
| def display_radar_chart(metrics_config, thresholds, baseline_metrics=None): | |
| """ | |
| Muestra el gráfico radar con los resultados. | |
| Args: | |
| metrics_config: Configuración actual de métricas | |
| thresholds: Umbrales para las métricas | |
| baseline_metrics: Métricas de línea base (opcional) | |
| """ | |
| try: | |
| # Preparar datos para el gráfico | |
| categories = [m['label'] for m in metrics_config] | |
| values_current = [m['value'] for m in metrics_config] | |
| min_values = [m['thresholds']['min'] for m in metrics_config] | |
| target_values = [m['thresholds']['target'] for m in metrics_config] | |
| # Crear y configurar gráfico | |
| fig = plt.figure(figsize=(8, 8)) | |
| ax = fig.add_subplot(111, projection='polar') | |
| # Configurar radar | |
| angles = [n / float(len(categories)) * 2 * np.pi for n in range(len(categories))] | |
| angles += angles[:1] | |
| values_current += values_current[:1] | |
| min_values += min_values[:1] | |
| target_values += target_values[:1] | |
| # Configurar ejes | |
| ax.set_xticks(angles[:-1]) | |
| ax.set_xticklabels(categories, fontsize=10) | |
| circle_ticks = np.arange(0, 1.1, 0.2) | |
| ax.set_yticks(circle_ticks) | |
| ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
| ax.set_ylim(0, 1) | |
| # Dibujar áreas de umbrales | |
| ax.plot(angles, min_values, '#e74c3c', linestyle='--', linewidth=1, | |
| label='Mínimo', alpha=0.5) | |
| ax.plot(angles, target_values, '#2ecc71', linestyle='--', linewidth=1, | |
| label='Meta', alpha=0.5) | |
| ax.fill_between(angles, target_values, [1]*len(angles), | |
| color='#2ecc71', alpha=0.1) | |
| ax.fill_between(angles, [0]*len(angles), min_values, | |
| color='#e74c3c', alpha=0.1) | |
| # Si hay línea base, dibujarla primero | |
| if baseline_metrics is not None: | |
| values_baseline = [baseline_metrics[m['key']]['normalized_score'] | |
| for m in metrics_config] | |
| values_baseline += values_baseline[:1] | |
| ax.plot(angles, values_baseline, '#888888', linewidth=2, | |
| label='Línea base', linestyle='--') | |
| ax.fill(angles, values_baseline, '#888888', alpha=0.1) | |
| # Dibujar valores actuales | |
| label = 'Actual' if baseline_metrics else 'Tu escritura' | |
| color = '#3498db' if baseline_metrics else '#3498db' | |
| ax.plot(angles, values_current, color, linewidth=2, label=label) | |
| ax.fill(angles, values_current, color, alpha=0.2) | |
| # Ajustar leyenda | |
| legend_handles = [] | |
| if baseline_metrics: | |
| legend_handles.extend([ | |
| plt.Line2D([], [], color='#888888', linestyle='--', | |
| label='Línea base'), | |
| plt.Line2D([], [], color='#3498db', label='Actual') | |
| ]) | |
| else: | |
| legend_handles.extend([ | |
| plt.Line2D([], [], color='#3498db', label='Tu escritura') | |
| ]) | |
| legend_handles.extend([ | |
| plt.Line2D([], [], color='#e74c3c', linestyle='--', label='Mínimo'), | |
| plt.Line2D([], [], color='#2ecc71', linestyle='--', label='Meta') | |
| ]) | |
| ax.legend( | |
| handles=legend_handles, | |
| loc='upper right', | |
| bbox_to_anchor=(1.3, 1.1), | |
| fontsize=10, | |
| frameon=True, | |
| facecolor='white', | |
| edgecolor='none', | |
| shadow=True | |
| ) | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| plt.close() | |
| except Exception as e: | |
| logger.error(f"Error mostrando gráfico radar: {str(e)}") | |
| st.error("Error al mostrar el gráfico") | |
| #Funciones auxiliares ################################## | |
| ############################################################ | |
| # Unificamos la lógica de sugerencias en una función | |
| ############################################################ | |
| def suggest_improvement_tools_list(dimension): | |
| """ | |
| Retorna en forma de lista las herramientas sugeridas | |
| basadas en 'ANALYSIS_DIMENSION_MAPPING'. | |
| """ | |
| suggestions = [] | |
| for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items(): | |
| # Verificamos si la dimensión está en primary o secondary | |
| if dimension in mapping['primary'] or dimension in mapping['secondary']: | |
| suggestions.extend(mapping['tools']) | |
| # Si no hay nada, al menos retornamos un placeholder | |
| return suggestions if suggestions else ["Sin sugerencias específicas."] | |
| def prepare_metrics_config(metrics, text_type='student_essay'): | |
| """ | |
| Prepara la configuración de métricas en el mismo formato que display_results. | |
| Args: | |
| metrics: Diccionario con las métricas analizadas | |
| text_type: Tipo de texto para los umbrales | |
| Returns: | |
| list: Lista de configuraciones de métricas | |
| """ | |
| # Obtener umbrales según el tipo de texto | |
| thresholds = TEXT_TYPES[text_type]['thresholds'] | |
| # Usar la misma estructura que en display_results | |
| return [ | |
| { | |
| 'label': "Vocabulario", | |
| 'key': 'vocabulary', | |
| 'value': metrics['vocabulary']['normalized_score'], | |
| 'help': "Riqueza y variedad del vocabulario", | |
| 'thresholds': thresholds['vocabulary'] | |
| }, | |
| { | |
| 'label': "Estructura", | |
| 'key': 'structure', | |
| 'value': metrics['structure']['normalized_score'], | |
| 'help': "Organización y complejidad de oraciones", | |
| 'thresholds': thresholds['structure'] | |
| }, | |
| { | |
| 'label': "Cohesión", | |
| 'key': 'cohesion', | |
| 'value': metrics['cohesion']['normalized_score'], | |
| 'help': "Conexión y fluidez entre ideas", | |
| 'thresholds': thresholds['cohesion'] | |
| }, | |
| { | |
| 'label': "Claridad", | |
| 'key': 'clarity', | |
| 'value': metrics['clarity']['normalized_score'], | |
| 'help': "Facilidad de comprensión del texto", | |
| 'thresholds': thresholds['clarity'] | |
| } | |
| ] | |