Spaces:
Running
Running
| #v3/modules/studentact/current_situation_analysis.py | |
| import streamlit as st | |
| import matplotlib.pyplot as plt | |
| import networkx as nx | |
| import seaborn as sns | |
| from collections import Counter | |
| from itertools import combinations | |
| import numpy as np | |
| import matplotlib.patches as patches | |
| import logging | |
| # 2. Configuraci贸n b谩sica del logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| handlers=[ | |
| logging.StreamHandler(), | |
| logging.FileHandler('app.log') | |
| ] | |
| ) | |
| # 3. Obtener el logger espec铆fico para este m贸dulo | |
| logger = logging.getLogger(__name__) | |
| ######################################################################### | |
| def correlate_metrics(scores): | |
| """ | |
| Ajusta los scores para mantener correlaciones l贸gicas entre m茅tricas. | |
| Args: | |
| scores: dict con scores iniciales de vocabulario, estructura, cohesi贸n y claridad | |
| Returns: | |
| dict con scores ajustados | |
| """ | |
| try: | |
| # 1. Correlaci贸n estructura-cohesi贸n | |
| # La cohesi贸n no puede ser menor que estructura * 0.7 | |
| min_cohesion = scores['structure']['normalized_score'] * 0.7 | |
| if scores['cohesion']['normalized_score'] < min_cohesion: | |
| scores['cohesion']['normalized_score'] = min_cohesion | |
| # 2. Correlaci贸n vocabulario-cohesi贸n | |
| # La cohesi贸n l茅xica depende del vocabulario | |
| vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 | |
| scores['cohesion']['normalized_score'] = max( | |
| scores['cohesion']['normalized_score'], | |
| vocab_influence | |
| ) | |
| # 3. Correlaci贸n cohesi贸n-claridad | |
| # La claridad no puede superar cohesi贸n * 1.2 | |
| max_clarity = scores['cohesion']['normalized_score'] * 1.2 | |
| if scores['clarity']['normalized_score'] > max_clarity: | |
| scores['clarity']['normalized_score'] = max_clarity | |
| # 4. Correlaci贸n estructura-claridad | |
| # La claridad no puede superar estructura * 1.1 | |
| struct_max_clarity = scores['structure']['normalized_score'] * 1.1 | |
| scores['clarity']['normalized_score'] = min( | |
| scores['clarity']['normalized_score'], | |
| struct_max_clarity | |
| ) | |
| # Normalizar todos los scores entre 0 y 1 | |
| for metric in scores: | |
| scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) | |
| return scores | |
| except Exception as e: | |
| logger.error(f"Error en correlate_metrics: {str(e)}") | |
| return scores | |
| ########################################################################## | |
| def analyze_text_dimensions(doc): | |
| """ | |
| Analiza las dimensiones principales del texto manteniendo correlaciones l贸gicas. | |
| """ | |
| try: | |
| # Obtener scores iniciales | |
| vocab_score, vocab_details = analyze_vocabulary_diversity(doc) | |
| struct_score = analyze_structure(doc) | |
| cohesion_score = analyze_cohesion(doc) | |
| clarity_score, clarity_details = analyze_clarity(doc) | |
| # Crear diccionario de scores inicial | |
| scores = { | |
| 'vocabulary': { | |
| 'normalized_score': vocab_score, | |
| 'details': vocab_details | |
| }, | |
| 'structure': { | |
| 'normalized_score': struct_score, | |
| 'details': None | |
| }, | |
| 'cohesion': { | |
| 'normalized_score': cohesion_score, | |
| 'details': None | |
| }, | |
| 'clarity': { | |
| 'normalized_score': clarity_score, | |
| 'details': clarity_details | |
| } | |
| } | |
| # Ajustar correlaciones entre m茅tricas | |
| adjusted_scores = correlate_metrics(scores) | |
| # Logging para diagn贸stico | |
| logger.info(f""" | |
| Scores originales vs ajustados: | |
| Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} | |
| Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} | |
| Cohesi贸n: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} | |
| Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} | |
| """) | |
| return adjusted_scores | |
| except Exception as e: | |
| logger.error(f"Error en analyze_text_dimensions: {str(e)}") | |
| return { | |
| 'vocabulary': {'normalized_score': 0.0, 'details': {}}, | |
| 'structure': {'normalized_score': 0.0, 'details': {}}, | |
| 'cohesion': {'normalized_score': 0.0, 'details': {}}, | |
| 'clarity': {'normalized_score': 0.0, 'details': {}} | |
| } | |
| ############################################################################################# | |
| def analyze_clarity(doc): | |
| """ | |
| Analiza la claridad del texto considerando m煤ltiples factores. | |
| """ | |
| try: | |
| sentences = list(doc.sents) | |
| if not sentences: | |
| return 0.0, {} | |
| # 1. Longitud de oraciones | |
| sentence_lengths = [len(sent) for sent in sentences] | |
| avg_length = sum(sentence_lengths) / len(sentences) | |
| # Normalizar usando los umbrales definidos para clarity | |
| length_score = normalize_score( | |
| value=avg_length, | |
| metric_type='clarity', | |
| optimal_length=20, # Una oraci贸n ideal tiene ~20 palabras | |
| min_threshold=0.60, # Consistente con METRIC_THRESHOLDS | |
| target_threshold=0.75 # Consistente con METRIC_THRESHOLDS | |
| ) | |
| # 2. An谩lisis de conectores | |
| connector_count = 0 | |
| connector_weights = { | |
| 'CCONJ': 1.0, # Coordinantes | |
| 'SCONJ': 1.2, # Subordinantes | |
| 'ADV': 0.8 # Adverbios conectivos | |
| } | |
| for token in doc: | |
| if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: | |
| connector_count += connector_weights[token.pos_] | |
| # Normalizar conectores por oraci贸n | |
| connectors_per_sentence = connector_count / len(sentences) if sentences else 0 | |
| connector_score = normalize_score( | |
| value=connectors_per_sentence, | |
| metric_type='clarity', | |
| optimal_connections=1.5, # ~1.5 conectores por oraci贸n es 贸ptimo | |
| min_threshold=0.60, | |
| target_threshold=0.75 | |
| ) | |
| # 3. Complejidad estructural | |
| clause_count = 0 | |
| for sent in sentences: | |
| verbs = [token for token in sent if token.pos_ == 'VERB'] | |
| clause_count += len(verbs) | |
| complexity_raw = clause_count / len(sentences) if sentences else 0 | |
| complexity_score = normalize_score( | |
| value=complexity_raw, | |
| metric_type='clarity', | |
| optimal_depth=2.0, # ~2 cl谩usulas por oraci贸n es 贸ptimo | |
| min_threshold=0.60, | |
| target_threshold=0.75 | |
| ) | |
| # 4. Densidad l茅xica | |
| content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) | |
| total_words = len([token for token in doc if token.is_alpha]) | |
| density = content_words / total_words if total_words > 0 else 0 | |
| density_score = normalize_score( | |
| value=density, | |
| metric_type='clarity', | |
| optimal_connections=0.6, # 60% de palabras de contenido es 贸ptimo | |
| min_threshold=0.60, | |
| target_threshold=0.75 | |
| ) | |
| # Score final ponderado | |
| weights = { | |
| 'length': 0.3, | |
| 'connectors': 0.3, | |
| 'complexity': 0.2, | |
| 'density': 0.2 | |
| } | |
| clarity_score = ( | |
| weights['length'] * length_score + | |
| weights['connectors'] * connector_score + | |
| weights['complexity'] * complexity_score + | |
| weights['density'] * density_score | |
| ) | |
| details = { | |
| 'length_score': length_score, | |
| 'connector_score': connector_score, | |
| 'complexity_score': complexity_score, | |
| 'density_score': density_score, | |
| 'avg_sentence_length': avg_length, | |
| 'connectors_per_sentence': connectors_per_sentence, | |
| 'density': density | |
| } | |
| # Agregar logging para diagn贸stico | |
| logger.info(f""" | |
| Scores de Claridad: | |
| - Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) | |
| - Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oraci贸n) | |
| - Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cl谩usulas) | |
| - Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) | |
| - Score Final: {clarity_score:.2f} | |
| """) | |
| return clarity_score, details | |
| except Exception as e: | |
| logger.error(f"Error en analyze_clarity: {str(e)}") | |
| return 0.0, {} | |
| def analyze_vocabulary_diversity(doc): | |
| """An谩lisis mejorado de la diversidad y calidad del vocabulario""" | |
| try: | |
| # 1. An谩lisis b谩sico de diversidad | |
| unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} | |
| total_words = len([token for token in doc if token.is_alpha]) | |
| basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 | |
| # 2. An谩lisis de registro | |
| academic_words = 0 | |
| narrative_words = 0 | |
| technical_terms = 0 | |
| # Clasificar palabras por registro | |
| for token in doc: | |
| if token.is_alpha: | |
| # Detectar t茅rminos acad茅micos/t茅cnicos | |
| if token.pos_ in ['NOUN', 'VERB', 'ADJ']: | |
| if any(parent.pos_ == 'NOUN' for parent in token.ancestors): | |
| technical_terms += 1 | |
| # Detectar palabras narrativas | |
| if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: | |
| narrative_words += 1 | |
| # 3. An谩lisis de complejidad sint谩ctica | |
| avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) | |
| # 4. Calcular score ponderado | |
| weights = { | |
| 'diversity': 0.3, | |
| 'technical': 0.3, | |
| 'narrative': 0.2, | |
| 'complexity': 0.2 | |
| } | |
| scores = { | |
| 'diversity': basic_diversity, | |
| 'technical': technical_terms / total_words if total_words > 0 else 0, | |
| 'narrative': narrative_words / total_words if total_words > 0 else 0, | |
| 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras | |
| } | |
| # Score final ponderado | |
| final_score = sum(weights[key] * scores[key] for key in weights) | |
| # Informaci贸n adicional para diagn贸stico | |
| details = { | |
| 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', | |
| 'scores': scores | |
| } | |
| return final_score, details | |
| except Exception as e: | |
| logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") | |
| return 0.0, {} | |
| def analyze_cohesion(doc): | |
| """Analiza la cohesi贸n textual""" | |
| try: | |
| sentences = list(doc.sents) | |
| if len(sentences) < 2: | |
| logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n") | |
| return 0.0 | |
| # 1. An谩lisis de conexiones l茅xicas | |
| lexical_connections = 0 | |
| total_possible_connections = 0 | |
| for i in range(len(sentences)-1): | |
| # Obtener lemmas significativos (no stopwords) | |
| sent1_words = {token.lemma_ for token in sentences[i] | |
| if token.is_alpha and not token.is_stop} | |
| sent2_words = {token.lemma_ for token in sentences[i+1] | |
| if token.is_alpha and not token.is_stop} | |
| if sent1_words and sent2_words: # Verificar que ambos conjuntos no est茅n vac铆os | |
| intersection = len(sent1_words.intersection(sent2_words)) | |
| total_possible = min(len(sent1_words), len(sent2_words)) | |
| if total_possible > 0: | |
| lexical_score = intersection / total_possible | |
| lexical_connections += lexical_score | |
| total_possible_connections += 1 | |
| # 2. An谩lisis de conectores | |
| connector_count = 0 | |
| connector_types = { | |
| 'CCONJ': 1.0, # Coordinantes | |
| 'SCONJ': 1.2, # Subordinantes | |
| 'ADV': 0.8 # Adverbios conectivos | |
| } | |
| for token in doc: | |
| if (token.pos_ in connector_types and | |
| token.dep_ in ['cc', 'mark', 'advmod'] and | |
| not token.is_stop): | |
| connector_count += connector_types[token.pos_] | |
| # 3. C谩lculo de scores normalizados | |
| if total_possible_connections > 0: | |
| lexical_cohesion = lexical_connections / total_possible_connections | |
| else: | |
| lexical_cohesion = 0 | |
| if len(sentences) > 1: | |
| connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) | |
| else: | |
| connector_cohesion = 0 | |
| # 4. Score final ponderado | |
| weights = { | |
| 'lexical': 0.7, | |
| 'connectors': 0.3 | |
| } | |
| cohesion_score = ( | |
| weights['lexical'] * lexical_cohesion + | |
| weights['connectors'] * connector_cohesion | |
| ) | |
| # 5. Logging para diagn贸stico | |
| logger.info(f""" | |
| An谩lisis de Cohesi贸n: | |
| - Conexiones l茅xicas encontradas: {lexical_connections} | |
| - Conexiones posibles: {total_possible_connections} | |
| - Lexical cohesion score: {lexical_cohesion} | |
| - Conectores encontrados: {connector_count} | |
| - Connector cohesion score: {connector_cohesion} | |
| - Score final: {cohesion_score} | |
| """) | |
| return cohesion_score | |
| except Exception as e: | |
| logger.error(f"Error en analyze_cohesion: {str(e)}") | |
| return 0.0 | |
| def analyze_structure(doc): | |
| try: | |
| if len(doc) == 0: | |
| return 0.0 | |
| structure_scores = [] | |
| for token in doc: | |
| if token.dep_ == 'ROOT': | |
| result = get_dependency_depths(token) | |
| structure_scores.append(result['final_score']) | |
| if not structure_scores: | |
| return 0.0 | |
| return min(1.0, sum(structure_scores) / len(structure_scores)) | |
| except Exception as e: | |
| logger.error(f"Error en analyze_structure: {str(e)}") | |
| return 0.0 | |
| # Funciones auxiliares de an谩lisis | |
| def get_dependency_depths(token, depth=0, analyzed_tokens=None): | |
| """ | |
| Analiza la profundidad y calidad de las relaciones de dependencia. | |
| Args: | |
| token: Token a analizar | |
| depth: Profundidad actual en el 谩rbol | |
| analyzed_tokens: Set para evitar ciclos en el an谩lisis | |
| Returns: | |
| dict: Informaci贸n detallada sobre las dependencias | |
| - depths: Lista de profundidades | |
| - relations: Diccionario con tipos de relaciones encontradas | |
| - complexity_score: Puntuaci贸n de complejidad | |
| """ | |
| if analyzed_tokens is None: | |
| analyzed_tokens = set() | |
| # Evitar ciclos | |
| if token.i in analyzed_tokens: | |
| return { | |
| 'depths': [], | |
| 'relations': {}, | |
| 'complexity_score': 0 | |
| } | |
| analyzed_tokens.add(token.i) | |
| # Pesos para diferentes tipos de dependencias | |
| dependency_weights = { | |
| # Dependencias principales | |
| 'nsubj': 1.2, # Sujeto nominal | |
| 'obj': 1.1, # Objeto directo | |
| 'iobj': 1.1, # Objeto indirecto | |
| 'ROOT': 1.3, # Ra铆z | |
| # Modificadores | |
| 'amod': 0.8, # Modificador adjetival | |
| 'advmod': 0.8, # Modificador adverbial | |
| 'nmod': 0.9, # Modificador nominal | |
| # Estructuras complejas | |
| 'csubj': 1.4, # Cl谩usula como sujeto | |
| 'ccomp': 1.3, # Complemento clausal | |
| 'xcomp': 1.2, # Complemento clausal abierto | |
| 'advcl': 1.2, # Cl谩usula adverbial | |
| # Coordinaci贸n y subordinaci贸n | |
| 'conj': 1.1, # Conjunci贸n | |
| 'cc': 0.7, # Coordinaci贸n | |
| 'mark': 0.8, # Marcador | |
| # Otros | |
| 'det': 0.5, # Determinante | |
| 'case': 0.5, # Caso | |
| 'punct': 0.1 # Puntuaci贸n | |
| } | |
| # Inicializar resultados | |
| current_result = { | |
| 'depths': [depth], | |
| 'relations': {token.dep_: 1}, | |
| 'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) | |
| } | |
| # Analizar hijos recursivamente | |
| for child in token.children: | |
| child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) | |
| # Combinar profundidades | |
| current_result['depths'].extend(child_result['depths']) | |
| # Combinar relaciones | |
| for rel, count in child_result['relations'].items(): | |
| current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count | |
| # Acumular score de complejidad | |
| current_result['complexity_score'] += child_result['complexity_score'] | |
| # Calcular m茅tricas adicionales | |
| current_result['max_depth'] = max(current_result['depths']) | |
| current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) | |
| current_result['relation_diversity'] = len(current_result['relations']) | |
| # Calcular score ponderado por tipo de estructura | |
| structure_bonus = 0 | |
| # Bonus por estructuras complejas | |
| if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: | |
| structure_bonus += 0.3 | |
| # Bonus por coordinaci贸n balanceada | |
| if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: | |
| structure_bonus += 0.2 | |
| # Bonus por modificaci贸n rica | |
| if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: | |
| structure_bonus += 0.2 | |
| current_result['final_score'] = ( | |
| current_result['complexity_score'] * (1 + structure_bonus) | |
| ) | |
| return current_result | |
| def normalize_score(value, metric_type, | |
| min_threshold=0.0, target_threshold=1.0, | |
| range_factor=2.0, optimal_length=None, | |
| optimal_connections=None, optimal_depth=None): | |
| """ | |
| Normaliza un valor considerando umbrales espec铆ficos por tipo de m茅trica. | |
| Args: | |
| value: Valor a normalizar | |
| metric_type: Tipo de m茅trica ('vocabulary', 'structure', 'cohesion', 'clarity') | |
| min_threshold: Valor m铆nimo aceptable | |
| target_threshold: Valor objetivo | |
| range_factor: Factor para ajustar el rango | |
| optimal_length: Longitud 贸ptima (opcional) | |
| optimal_connections: N煤mero 贸ptimo de conexiones (opcional) | |
| optimal_depth: Profundidad 贸ptima de estructura (opcional) | |
| Returns: | |
| float: Valor normalizado entre 0 y 1 | |
| """ | |
| try: | |
| # Definir umbrales por tipo de m茅trica | |
| METRIC_THRESHOLDS = { | |
| 'vocabulary': { | |
| 'min': 0.60, | |
| 'target': 0.75, | |
| 'range_factor': 1.5 | |
| }, | |
| 'structure': { | |
| 'min': 0.65, | |
| 'target': 0.80, | |
| 'range_factor': 1.8 | |
| }, | |
| 'cohesion': { | |
| 'min': 0.55, | |
| 'target': 0.70, | |
| 'range_factor': 1.6 | |
| }, | |
| 'clarity': { | |
| 'min': 0.60, | |
| 'target': 0.75, | |
| 'range_factor': 1.7 | |
| } | |
| } | |
| # Validar valores negativos o cero | |
| if value < 0: | |
| logger.warning(f"Valor negativo recibido: {value}") | |
| return 0.0 | |
| # Manejar caso donde el valor es cero | |
| if value == 0: | |
| logger.warning("Valor cero recibido") | |
| return 0.0 | |
| # Obtener umbrales espec铆ficos para el tipo de m茅trica | |
| thresholds = METRIC_THRESHOLDS.get(metric_type, { | |
| 'min': min_threshold, | |
| 'target': target_threshold, | |
| 'range_factor': range_factor | |
| }) | |
| # Identificar el valor de referencia a usar | |
| if optimal_depth is not None: | |
| reference = optimal_depth | |
| elif optimal_connections is not None: | |
| reference = optimal_connections | |
| elif optimal_length is not None: | |
| reference = optimal_length | |
| else: | |
| reference = thresholds['target'] | |
| # Validar valor de referencia | |
| if reference <= 0: | |
| logger.warning(f"Valor de referencia inv谩lido: {reference}") | |
| return 0.0 | |
| # Calcular score basado en umbrales | |
| if value < thresholds['min']: | |
| # Valor por debajo del m铆nimo | |
| score = (value / thresholds['min']) * 0.5 # M谩ximo 0.5 para valores bajo el m铆nimo | |
| elif value < thresholds['target']: | |
| # Valor entre m铆nimo y objetivo | |
| range_size = thresholds['target'] - thresholds['min'] | |
| progress = (value - thresholds['min']) / range_size | |
| score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0 | |
| else: | |
| # Valor alcanza o supera el objetivo | |
| score = 1.0 | |
| # Penalizar valores muy por encima del objetivo | |
| if value > (thresholds['target'] * thresholds['range_factor']): | |
| excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) | |
| score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos | |
| # Asegurar que el resultado est茅 entre 0 y 1 | |
| return max(0.0, min(1.0, score)) | |
| except Exception as e: | |
| logger.error(f"Error en normalize_score: {str(e)}") | |
| return 0.0 | |
| # Funciones de generaci贸n de gr谩ficos | |
| def generate_sentence_graphs(doc): | |
| """Genera visualizaciones de estructura de oraciones""" | |
| fig, ax = plt.subplots(figsize=(10, 6)) | |
| # Implementar visualizaci贸n | |
| plt.close() | |
| return fig | |
| def generate_word_connections(doc): | |
| """Genera red de conexiones de palabras""" | |
| fig, ax = plt.subplots(figsize=(10, 6)) | |
| # Implementar visualizaci贸n | |
| plt.close() | |
| return fig | |
| def generate_connection_paths(doc): | |
| """Genera patrones de conexi贸n""" | |
| fig, ax = plt.subplots(figsize=(10, 6)) | |
| # Implementar visualizaci贸n | |
| plt.close() | |
| return fig | |
| def create_vocabulary_network(doc): | |
| """ | |
| Genera el grafo de red de vocabulario. | |
| """ | |
| G = nx.Graph() | |
| # Crear nodos para palabras significativas | |
| words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] | |
| word_freq = Counter(words) | |
| # A帽adir nodos con tama帽o basado en frecuencia | |
| for word, freq in word_freq.items(): | |
| G.add_node(word, size=freq) | |
| # Crear conexiones basadas en co-ocurrencia | |
| window_size = 5 | |
| for i in range(len(words) - window_size): | |
| window = words[i:i+window_size] | |
| for w1, w2 in combinations(set(window), 2): | |
| if G.has_edge(w1, w2): | |
| G[w1][w2]['weight'] += 1 | |
| else: | |
| G.add_edge(w1, w2, weight=1) | |
| # Crear visualizaci贸n | |
| fig, ax = plt.subplots(figsize=(12, 8)) | |
| pos = nx.spring_layout(G) | |
| # Dibujar nodos | |
| nx.draw_networkx_nodes(G, pos, | |
| node_size=[G.nodes[node]['size']*100 for node in G.nodes], | |
| node_color='lightblue', | |
| alpha=0.7) | |
| # Dibujar conexiones | |
| nx.draw_networkx_edges(G, pos, | |
| width=[G[u][v]['weight']*0.5 for u,v in G.edges], | |
| alpha=0.5) | |
| # A帽adir etiquetas | |
| nx.draw_networkx_labels(G, pos) | |
| plt.title("Red de Vocabulario") | |
| plt.axis('off') | |
| return fig | |
| def create_syntax_complexity_graph(doc): | |
| """ | |
| Genera el diagrama de arco de complejidad sint谩ctica. | |
| Muestra la estructura de dependencias con colores basados en la complejidad. | |
| """ | |
| try: | |
| # Preparar datos para la visualizaci贸n | |
| sentences = list(doc.sents) | |
| if not sentences: | |
| return None | |
| # Crear figura para el gr谩fico | |
| fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) | |
| # Colores para diferentes niveles de profundidad | |
| depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) | |
| y_offset = 0 | |
| max_x = 0 | |
| for sent in sentences: | |
| words = [token.text for token in sent] | |
| x_positions = range(len(words)) | |
| max_x = max(max_x, len(words)) | |
| # Dibujar palabras | |
| plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) | |
| plt.scatter(x_positions, [y_offset] * len(words), alpha=0) | |
| # A帽adir texto | |
| for i, word in enumerate(words): | |
| plt.annotate(word, (i, y_offset), xytext=(0, -10), | |
| textcoords='offset points', ha='center') | |
| # Dibujar arcos de dependencia | |
| for token in sent: | |
| if token.dep_ != "ROOT": | |
| # Calcular profundidad de dependencia | |
| depth = 0 | |
| current = token | |
| while current.head != current: | |
| depth += 1 | |
| current = current.head | |
| # Determinar posiciones para el arco | |
| start = token.i - sent[0].i | |
| end = token.head.i - sent[0].i | |
| # Altura del arco basada en la distancia entre palabras | |
| height = 0.5 * abs(end - start) | |
| # Color basado en la profundidad | |
| color = depth_colors[min(depth, len(depth_colors)-1)] | |
| # Crear arco | |
| arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), | |
| width=abs(end - start), | |
| height=height, | |
| angle=0, | |
| theta1=0, | |
| theta2=180, | |
| color=color, | |
| alpha=0.6) | |
| ax.add_patch(arc) | |
| y_offset -= 2 | |
| # Configurar el gr谩fico | |
| plt.xlim(-1, max_x) | |
| plt.ylim(y_offset - 1, 1) | |
| plt.axis('off') | |
| plt.title("Complejidad Sint谩ctica") | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") | |
| return None | |
| def create_cohesion_heatmap(doc): | |
| """Genera un mapa de calor que muestra la cohesi贸n entre p谩rrafos/oraciones.""" | |
| try: | |
| sentences = list(doc.sents) | |
| n_sentences = len(sentences) | |
| if n_sentences < 2: | |
| return None | |
| similarity_matrix = np.zeros((n_sentences, n_sentences)) | |
| for i in range(n_sentences): | |
| for j in range(n_sentences): | |
| sent1_lemmas = {token.lemma_ for token in sentences[i] | |
| if token.is_alpha and not token.is_stop} | |
| sent2_lemmas = {token.lemma_ for token in sentences[j] | |
| if token.is_alpha and not token.is_stop} | |
| if sent1_lemmas and sent2_lemmas: | |
| intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aqu铆 | |
| union = len(sent1_lemmas | sent2_lemmas) # Y aqu铆 | |
| similarity_matrix[i, j] = intersection / union if union > 0 else 0 | |
| # Crear visualizaci贸n | |
| fig, ax = plt.subplots(figsize=(10, 8)) | |
| sns.heatmap(similarity_matrix, | |
| cmap='YlOrRd', | |
| square=True, | |
| xticklabels=False, | |
| yticklabels=False, | |
| cbar_kws={'label': 'Cohesi贸n'}, | |
| ax=ax) | |
| plt.title("Mapa de Cohesi贸n Textual") | |
| plt.xlabel("Oraciones") | |
| plt.ylabel("Oraciones") | |
| plt.tight_layout() | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error en create_cohesion_heatmap: {str(e)}") | |
| return None | |