Spaces:
Running
Running
| # modules/studentact/current_situation_interface.py | |
| import streamlit as st | |
| import logging | |
| from ..utils.widget_utils import generate_unique_key | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from ..database.current_situation_mongo_db import store_current_situation_result | |
| from .current_situation_analysis import ( | |
| analyze_text_dimensions, | |
| analyze_clarity, | |
| analyze_reference_clarity, | |
| analyze_vocabulary_diversity, | |
| analyze_cohesion, | |
| analyze_structure, | |
| get_dependency_depths, | |
| normalize_score, | |
| generate_sentence_graphs, | |
| generate_word_connections, | |
| generate_connection_paths, | |
| create_vocabulary_network, | |
| create_syntax_complexity_graph, | |
| create_cohesion_heatmap, | |
| ) | |
| # Configuración del estilo de matplotlib para el gráfico de radar | |
| plt.rcParams['font.family'] = 'sans-serif' | |
| plt.rcParams['axes.grid'] = True | |
| plt.rcParams['axes.spines.top'] = False | |
| plt.rcParams['axes.spines.right'] = False | |
| logger = logging.getLogger(__name__) | |
| #################################### | |
| def display_current_situation_interface(lang_code, nlp_models, t): | |
| """ | |
| Interfaz simplificada con gráfico de radar para visualizar métricas. | |
| """ | |
| try: | |
| # Inicializar estados si no existen | |
| if 'text_input' not in st.session_state: | |
| st.session_state.text_input = "" | |
| if 'show_results' not in st.session_state: | |
| st.session_state.show_results = False | |
| if 'current_doc' not in st.session_state: | |
| st.session_state.current_doc = None | |
| if 'current_metrics' not in st.session_state: | |
| st.session_state.current_metrics = None | |
| st.markdown("## Análisis Inicial de Escritura") | |
| # Container principal con dos columnas | |
| with st.container(): | |
| input_col, results_col = st.columns([1,2]) | |
| with input_col: | |
| #st.markdown("### Ingresa tu texto") | |
| # Función para manejar cambios en el texto | |
| def on_text_change(): | |
| st.session_state.text_input = st.session_state.text_area | |
| st.session_state.show_results = False | |
| # Text area con manejo de estado | |
| text_input = st.text_area( | |
| t.get('input_prompt', "Escribe o pega tu texto aquí:"), | |
| height=400, | |
| key="text_area", | |
| value=st.session_state.text_input, | |
| on_change=on_text_change, | |
| help="Este texto será analizado para darte recomendaciones personalizadas" | |
| ) | |
| if st.button( | |
| t.get('analyze_button', "Analizar mi escritura"), | |
| type="primary", | |
| disabled=not text_input.strip(), | |
| use_container_width=True, | |
| ): | |
| try: | |
| with st.spinner(t.get('processing', "Analizando...")): | |
| doc = nlp_models[lang_code](text_input) | |
| metrics = analyze_text_dimensions(doc) | |
| # Guardar en MongoDB | |
| storage_success = store_current_situation_result( | |
| username=st.session_state.username, | |
| text=text_input, | |
| metrics=metrics, | |
| feedback=None | |
| ) | |
| if not storage_success: | |
| logger.warning("No se pudo guardar el análisis en la base de datos") | |
| st.session_state.current_doc = doc | |
| st.session_state.current_metrics = metrics | |
| st.session_state.show_results = True | |
| st.session_state.text_input = text_input | |
| except Exception as e: | |
| logger.error(f"Error en análisis: {str(e)}") | |
| st.error(t.get('analysis_error', "Error al analizar el texto")) | |
| # Mostrar resultados en la columna derecha | |
| with results_col: | |
| if st.session_state.show_results and st.session_state.current_metrics is not None: | |
| display_radar_chart(st.session_state.current_metrics) | |
| except Exception as e: | |
| logger.error(f"Error en interfaz: {str(e)}") | |
| st.error("Ocurrió un error. Por favor, intente de nuevo.") | |
| def display_radar_chart(metrics): | |
| """ | |
| Muestra un gráfico de radar con las métricas del usuario y el patrón ideal. | |
| """ | |
| try: | |
| # Container con proporción reducida | |
| with st.container(): | |
| # Métricas en la parte superior | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| st.metric("Vocabulario", f"{metrics['vocabulary']['normalized_score']:.2f}", "1.00") | |
| with col2: | |
| st.metric("Estructura", f"{metrics['structure']['normalized_score']:.2f}", "1.00") | |
| with col3: | |
| st.metric("Cohesión", f"{metrics['cohesion']['normalized_score']:.2f}", "1.00") | |
| with col4: | |
| st.metric("Claridad", f"{metrics['clarity']['normalized_score']:.2f}", "1.00") | |
| # Contenedor para el gráfico con ancho controlado | |
| _, graph_col, _ = st.columns([1,2,1]) | |
| with graph_col: | |
| # Preparar datos | |
| categories = ['Vocabulario', 'Estructura', 'Cohesión', 'Claridad'] | |
| values_user = [ | |
| metrics['vocabulary']['normalized_score'], | |
| metrics['structure']['normalized_score'], | |
| metrics['cohesion']['normalized_score'], | |
| metrics['clarity']['normalized_score'] | |
| ] | |
| values_pattern = [1.0, 1.0, 1.0, 1.0] # Patrón ideal | |
| # Crear figura más compacta | |
| fig = plt.figure(figsize=(6, 6)) | |
| ax = fig.add_subplot(111, projection='polar') | |
| # Número de variables | |
| num_vars = len(categories) | |
| # Calcular ángulos | |
| angles = [n / float(num_vars) * 2 * np.pi for n in range(num_vars)] | |
| angles += angles[:1] | |
| # Extender valores para cerrar polígonos | |
| values_user += values_user[:1] | |
| values_pattern += values_pattern[:1] | |
| # Configurar ejes y etiquetas | |
| ax.set_xticks(angles[:-1]) | |
| ax.set_xticklabels(categories, fontsize=8) | |
| # Círculos concéntricos y etiquetas | |
| circle_ticks = np.arange(0, 1.1, 0.2) # Reducido a 5 niveles | |
| ax.set_yticks(circle_ticks) | |
| ax.set_yticklabels([f'{tick:.1f}' for tick in circle_ticks], fontsize=8) | |
| ax.set_ylim(0, 1) | |
| # Dibujar patrón ideal | |
| ax.plot(angles, values_pattern, 'g--', linewidth=1, label='Patrón', alpha=0.5) | |
| ax.fill(angles, values_pattern, 'g', alpha=0.1) | |
| # Dibujar valores del usuario | |
| ax.plot(angles, values_user, 'b-', linewidth=2, label='Tu escritura') | |
| ax.fill(angles, values_user, 'b', alpha=0.2) | |
| # Leyenda | |
| ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), fontsize=8) | |
| # Ajustes finales | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| plt.close() | |
| except Exception as e: | |
| logger.error(f"Error generando gráfico de radar: {str(e)}") | |
| st.error("Error al generar la visualización") |