Spaces:
Running
Running
| #modules/morphosyntax/morphosyntax_interface.py | |
| import streamlit as st | |
| from streamlit_float import * | |
| from streamlit_antd_components import * | |
| from streamlit.components.v1 import html | |
| import base64 | |
| from .morphosyntax_process import process_morphosyntactic_input | |
| from ..chatbot.chatbot import initialize_chatbot | |
| from ..utils.widget_utils import generate_unique_key | |
| from ..database.database_oldFromV2 import store_morphosyntax_result | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| ####################### VERSION ANTERIOR A LAS 20:00 24-9-24 | |
| def display_morphosyntax_interface(lang_code, nlp_models, t): | |
| # Estilo CSS personalizado | |
| st.markdown(""" | |
| <style> | |
| .morpho-initial-message { | |
| background-color: #f0f2f6; | |
| border-left: 5px solid #4CAF50; | |
| padding: 10px; | |
| border-radius: 5px; | |
| font-size: 16px; | |
| margin-bottom: 20px; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Mostrar el mensaje inicial como un párrafo estilizado | |
| st.markdown(f""" | |
| <div class="morpho-initial-message"> | |
| {t['morpho_initial_message']} | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Inicializar el chatbot si no existe | |
| if 'morphosyntax_chatbot' not in st.session_state: | |
| st.session_state.morphosyntax_chatbot = initialize_chatbot('morphosyntactic') | |
| # Crear un contenedor para el chat | |
| chat_container = st.container() | |
| # Mostrar el historial del chat | |
| with chat_container: | |
| if 'morphosyntax_chat_history' not in st.session_state: | |
| st.session_state.morphosyntax_chat_history = [] | |
| for i, message in enumerate(st.session_state.morphosyntax_chat_history): | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| if "visualizations" in message: | |
| for viz in message["visualizations"]: | |
| st.components.v1.html( | |
| f""" | |
| <div style="width: 100%; overflow-x: auto; white-space: nowrap;"> | |
| <div style="min-width: 1200px;"> | |
| {viz} | |
| </div> | |
| </div> | |
| """, | |
| height=370, | |
| scrolling=True | |
| ) | |
| # Input del usuario | |
| user_input = st.chat_input( | |
| t['morpho_input_label'], | |
| key=generate_unique_key('morphosyntax', "chat_input") | |
| ) | |
| if user_input: | |
| # Añadir el mensaje del usuario al historial | |
| st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) | |
| # Mostrar indicador de carga | |
| with st.spinner(t.get('processing', 'Processing...')): | |
| try: | |
| # Procesar el input del usuario | |
| response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) | |
| # Añadir la respuesta al historial | |
| message = { | |
| "role": "assistant", | |
| "content": response | |
| } | |
| if visualizations: | |
| message["visualizations"] = visualizations | |
| st.session_state.morphosyntax_chat_history.append(message) | |
| # Mostrar la respuesta más reciente | |
| with st.chat_message("assistant"): | |
| st.write(response) | |
| if visualizations: | |
| for i, viz in enumerate(visualizations): | |
| st.components.v1.html( | |
| f""" | |
| <div style="width: 100%; overflow-x: auto; white-space: nowrap;"> | |
| <div style="min-width: 1200px;"> | |
| {viz} | |
| </div> | |
| </div> | |
| """, | |
| height=350, | |
| scrolling=True | |
| ) | |
| # Si es un análisis, guardarlo en la base de datos | |
| if user_input.startswith('/analisis_morfosintactico') and result: | |
| store_morphosyntax_result( | |
| st.session_state.username, | |
| user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado | |
| result.get('repeated_words', {}), | |
| visualizations, | |
| result.get('pos_analysis', []), | |
| result.get('morphological_analysis', []), | |
| result.get('sentence_structure', []) | |
| ) | |
| except Exception as e: | |
| st.error(f"{t['error_processing']}: {str(e)}") | |
| # Si es un análisis, guardarlo en la base de datos | |
| if user_input.startswith('/analisis_morfosintactico') and result: | |
| store_morphosyntax_result( | |
| st.session_state.username, | |
| user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado | |
| result['repeated_words'], | |
| visualizations, # Ahora pasamos todas las visualizaciones | |
| result['pos_analysis'], | |
| result['morphological_analysis'], | |
| result['sentence_structure'] | |
| ) | |
| # Forzar la actualización de la interfaz | |
| st.rerun() | |
| # Botón para limpiar el historial del chat | |
| if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): | |
| st.session_state.morphosyntax_chat_history = [] | |
| st.rerun() | |
| ''' | |
| ############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### | |
| def display_morphosyntax_interface(lang_code, nlp_models, t): | |
| st.subheader(t['morpho_title']) | |
| text_input = st.text_area( | |
| t['warning_message'], | |
| height=150, | |
| key=generate_unique_key("morphosyntax", "text_area") | |
| ) | |
| if st.button( | |
| t['results_title'], | |
| key=generate_unique_key("morphosyntax", "analyze_button") | |
| ): | |
| if text_input: | |
| # Aquí iría tu lógica de análisis morfosintáctico | |
| # Por ahora, solo mostraremos un mensaje de placeholder | |
| st.info(t['analysis_placeholder']) | |
| else: | |
| st.warning(t['no_text_warning']) | |
| ### | |
| ################################################# | |
| ''' | |