v4 / modules /semantic /semantic_interface.py
AIdeaText's picture
Update modules/semantic/semantic_interface.py
fd5c262 verified
raw
history blame
6.98 kB
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging
# Configuración del logger
logger = logging.getLogger(__name__)
# Importaciones locales
from .semantic_process import (
process_semantic_input,
format_semantic_results
)
from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions
def display_semantic_interface(lang_code, nlp_models, semantic_t):
"""
Interfaz para el análisis semántico
Args:
lang_code: Código del idioma actual
nlp_models: Modelos de spaCy cargados
semantic_t: Diccionario de traducciones
"""
# Mantener la página actual
st.session_state.page = 'semantic'
# Estilos para los botones y controles
st.markdown("""
<style>
.stButton button {
width: 100%;
padding: 0.5rem;
}
.upload-container {
display: flex;
align-items: center;
}
</style>
""", unsafe_allow_html=True)
# Contenedor principal para controles
with st.container():
col_upload, col_analyze, col_export, col_new = st.columns([4,2,2,2])
with col_upload:
uploaded_file = st.file_uploader(
semantic_t.get('file_uploader', 'Upload text file'),
type=['txt'],
key="semantic_file_uploader" # Key única para semántico
)
with col_analyze:
analyze_button = st.button(
semantic_t.get('semantic_analyze_button', 'Analyze Semantics'), # Nombre específico
key="semantic_analysis_button", # Key única para semántico
disabled=(uploaded_file is None),
use_container_width=True
)
with col_export:
export_button = st.button(
semantic_t.get('semantic_export_button', 'Export Semantic'), # Nombre específico
key="semantic_export_button", # Key única para semántico
disabled=not ('semantic_result' in st.session_state),
use_container_width=True
)
with col_new:
new_button = st.button(
semantic_t.get('semantic_new_button', 'New Semantic'), # Nombre específico
key="semantic_new_button", # Key única para semántico
disabled=not ('semantic_result' in st.session_state),
use_container_width=True
)
# Línea separadora
st.markdown("---")
# Lógica de análisis
if uploaded_file is not None and analyze_button:
try:
# Procesar el archivo
text_content = uploaded_file.getvalue().decode('utf-8')
with st.spinner(semantic_t.get('processing', 'Processing...')):
# Realizar análisis
analysis_result = perform_semantic_analysis(
text_content,
nlp_models[lang_code],
lang_code
)
# Guardar resultado
st.session_state.semantic_result = analysis_result
# Guardar en base de datos
if store_student_semantic_result(
st.session_state.username,
text_content,
analysis_result
):
st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
else:
st.error(semantic_t.get('error_message', 'Error saving analysis'))
# Mostrar resultados
display_semantic_results(analysis_result, lang_code, semantic_t)
except Exception as e:
st.error(f"Error: {str(e)}")
# Manejo de exportación
if export_button and 'semantic_result' in st.session_state:
try:
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
st.download_button(
label=semantic_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="semantic_analysis.pdf",
mime="application/pdf"
)
except Exception as e:
st.error(f"Error exporting: {str(e)}")
# Nuevo análisis
if new_button:
if 'semantic_result' in st.session_state:
del st.session_state.semantic_result
st.rerun()
# Mostrar resultados previos o mensaje inicial
if 'semantic_result' in st.session_state:
display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t)
elif uploaded_file is None:
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis'))
def display_semantic_results(result, lang_code, semantic_t):
"""
Muestra los resultados del análisis semántico
"""
if result is None or not result['success']:
st.warning(semantic_t.get('no_results', 'No results available'))
return
analysis = result['analysis']
# Crear tabs para los resultados
tab1, tab2 = st.tabs([
semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
semantic_t.get('entities_tab', 'Entities Analysis')
])
# Tab 1: Conceptos Clave
with tab1:
col1, col2 = st.columns(2)
# Columna 1: Lista de conceptos
with col1:
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
concept_text = "\n".join([
f"• {concept} ({frequency:.2f})"
for concept, frequency in analysis['key_concepts']
])
st.markdown(concept_text)
# Columna 2: Gráfico de conceptos
with col2:
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
st.image(analysis['concept_graph'])
# Tab 2: Entidades
with tab2:
col1, col2 = st.columns(2)
# Columna 1: Lista de entidades
with col1:
st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
if 'entities' in analysis:
for entity_type, entities in analysis['entities'].items():
st.markdown(f"**{entity_type}**")
st.markdown("• " + "\n• ".join(entities))
# Columna 2: Gráfico de entidades
with col2:
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
st.image(analysis['entity_graph'])